a) The value of the pooled proportion is computed as
p ˉ = X 1 + X 2 n 1 + n 2 = 0.65 ( 150 ) + 0.6 ( 260 ) 150 + 260 = 0.6183 \bar{p}=\dfrac{X_1+X_2}{n_1+n_2}=\dfrac{0.65(150)+0.6(260)}{150+260}=0.6183 p ˉ = n 1 + n 2 X 1 + X 2 = 150 + 260 0.65 ( 150 ) + 0.6 ( 260 ) = 0.6183 The following null and alternative hypotheses for the population proportion needs to be tested:
H 0 : p 1 = p 2 H_0:p_1=p_2 H 0 : p 1 = p 2
H 1 : p 1 ≠ p 2 H_1:p_1\not=p_2 H 1 : p 1 = p 2
This corresponds to a two-tailed test, and a z-test for two population proportions will be used.
Based on the information provided, the significance level is α = 0.05 , \alpha = 0.05, α = 0.05 , and the critical value for a two-tailed test is z c = 1.96. z_c = 1.96. z c = 1.96.
The rejection region for this two-tailed test is R = { z : ∣ z ∣ > 1.96 } . R = \{z: |z| > 1.96\}. R = { z : ∣ z ∣ > 1.96 } .
The z-statistic is computed as follows:
z = p ^ 1 − p ^ 2 p ˉ ( 1 − p ˉ ) ( 1 / n 1 + 1 / n 2 ) z=\dfrac{\hat{p}_1-\hat{p}_2}{\sqrt{\bar{p}(1-\bar{p})(1/n_1+1/n_2)}} z = p ˉ ( 1 − p ˉ ) ( 1/ n 1 + 1/ n 2 ) p ^ 1 − p ^ 2
= 0.65 − 0.6 0.6183 ( 1 − 0.6183 ) ( 1 / 150 + 1 / 260 ) =\dfrac{0.65-0.6}{\sqrt{0.6183(1-0.6183)(1/150+1/260)}} = 0.6183 ( 1 − 0.6183 ) ( 1/150 + 1/260 ) 0.65 − 0.6
= 1.0038 =1.0038 = 1.0038 Since it is observed that ∣ z ∣ = 1.0038 ≤ 1.96 = z c , |z| = 1.0038 \le1.96= z_c, ∣ z ∣ = 1.0038 ≤ 1.96 = z c , it is then concluded that the null hypothesis is not rejected.
Using the P-value approach:
The p-value is p = 2 P ( Z > 1.0038 ) = 0.315475 , p =2P(Z>1.0038)= 0.315475, p = 2 P ( Z > 1.0038 ) = 0.315475 , and since p = 0.315475 > 0.05 = α , p= 0.315475>0.05=\alpha, p = 0.315475 > 0.05 = α , it is concluded that the null hypothesis is not rejected.
Therefore, there is not enough evidence to claim that the population proportion p 1 p_1 p 1 is different than p 2 , p_2, p 2 , at the α = 0.05 \alpha = 0.05 α = 0.05 significance level.
b) The critical value for α = 0.05 \alpha = 0.05 α = 0.05 is z c = z 1 − α / 2 = 1.96. z_c = z_{1-\alpha/2} = 1.96. z c = z 1 − α /2 = 1.96.
The corresponding confidence interval is computed as shown below:
C I = ( p ^ 1 − p ^ 2 − z c p ^ 1 ( 1 − p ^ 1 ) n 1 + p ^ 2 ( 1 − p ^ 2 ) n 2 , CI=(\hat{p}_1-\hat{p}_2-z_c\sqrt{\dfrac{\hat{p}_1(1-\hat{p}_1)}{n_1}+\dfrac{\hat{p}_2(1-\hat{p}_2)}{n_2}}, C I = ( p ^ 1 − p ^ 2 − z c n 1 p ^ 1 ( 1 − p ^ 1 ) + n 2 p ^ 2 ( 1 − p ^ 2 ) ,
p ^ 1 − p ^ 2 + z c p ^ 1 ( 1 − p ^ 1 ) n 1 + p ^ 2 ( 1 − p ^ 2 ) n 2 ) \hat{p}_1-\hat{p}_2+z_c\sqrt{\dfrac{\hat{p}_1(1-\hat{p}_1)}{n_1}+\dfrac{\hat{p}_2(1-\hat{p}_2)}{n_2}}) p ^ 1 − p ^ 2 + z c n 1 p ^ 1 ( 1 − p ^ 1 ) + n 2 p ^ 2 ( 1 − p ^ 2 ) )
= ( 0.65 − 0.6 − 1.96 0.65 ( 1 − 0.65 ) 150 + 0.6 ( 1 − 0.6 ) 260 , =(0.65-0.6-1.96\sqrt{\dfrac{0.65(1-0.65)}{150}+\dfrac{0.6(1-0.6)}{260}}, = ( 0.65 − 0.6 − 1.96 150 0.65 ( 1 − 0.65 ) + 260 0.6 ( 1 − 0.6 ) ,
0.65 − 0.6 + 1.96 0.65 ( 1 − 0.65 ) 150 + 0.6 ( 1 − 0.6 ) 260 ) 0.65-0.6+1.96\sqrt{\dfrac{0.65(1-0.65)}{150}+\dfrac{0.6(1-0.6)}{260}}) 0.65 − 0.6 + 1.96 150 0.65 ( 1 − 0.65 ) + 260 0.6 ( 1 − 0.6 ) )
≈ ( − 0.047 , 0.147 ) \approx(-0.047, 0.147) ≈ ( − 0.047 , 0.147 ) Therefore, based on the data provided, the 95 % confidence interval for the difference between the population proportions p 1 − p 2 p_1 - p_2 p 1 − p 2 is − 0.047 < p 1 − p 2 < 0.147 , -0.047 < p_1 - p_2 < 0.147, − 0.047 < p 1 − p 2 < 0.147 , which indicates that we are 95% confident that the true difference between population proportions is contained by the interval ( − 0.047 , 0.147 ) . (-0.047, 0.147). ( − 0.047 , 0.147 ) .
Comments