Question #263957

An electric company claims that the average life of the bulbs it manufactures is 1

200 hours with a standard deviation of 250 hours. If a random sample of 100 bulbs is

chosen, what is the probability that the sample mean will be:

a. Greater than 1 150 hours?

b. Less than 1 250 hours ?

c. Between 1 150 and 1 250 hours?


1
Expert's answer
2021-11-11T14:13:37-0500

μ=1200σ=250n=100\mu=1200 \\ \sigma = 250 \\ n=100

a.

P(xˉ>1150)=1P(xˉ<1150)=1P(Z<11501200250/100)=1P(Z<2)=10.0227=0.9773P(\bar{x} > 1150) = 1 -P(\bar{x} < 1150) \\ = 1 -P(Z< \frac{1150-1200}{250 / \sqrt{100}} )\\ = 1 -P(Z< -2) \\ = 1 -0.0227 \\ = 0.9773

b.

P(xˉ<1250)=P(Z<12501200250/100)=P(Z<2)=0.9772P(\bar{x} < 1250) = P(Z < \frac{1250-1200}{250 / \sqrt{100}}) \\ = P(Z< 2) \\ = 0.9772

c.

P(1150<xˉ<1250)=P(xˉ<1250)P(xˉ<1150)=P(Z<12501200250/100)P(Z<11501200250/100)=P(Z<2)P(Z<2)=0.97720.0227=0.9545P(1150 < \bar{x} < 1250) = P(\bar{x} < 1250) -P(\bar{x} < 1150) \\ = P(Z < \frac{1250-1200}{250 / \sqrt{100}}) -P(Z < \frac{1150-1200}{250 / \sqrt{100}}) \\ = P(Z< 2) -P(Z< -2) \\ = 0.9772 -0.0227 \\ = 0.9545


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS