μ = 1200 σ = 250 n = 100 \mu=1200 \\
\sigma = 250 \\
n=100 μ = 1200 σ = 250 n = 100
a.
P ( x ˉ > 1150 ) = 1 − P ( x ˉ < 1150 ) = 1 − P ( Z < 1150 − 1200 250 / 100 ) = 1 − P ( Z < − 2 ) = 1 − 0.0227 = 0.9773 P(\bar{x} > 1150) = 1 -P(\bar{x} < 1150) \\
= 1 -P(Z< \frac{1150-1200}{250 / \sqrt{100}} )\\
= 1 -P(Z< -2) \\
= 1 -0.0227 \\
= 0.9773 P ( x ˉ > 1150 ) = 1 − P ( x ˉ < 1150 ) = 1 − P ( Z < 250/ 100 1150 − 1200 ) = 1 − P ( Z < − 2 ) = 1 − 0.0227 = 0.9773
b.
P ( x ˉ < 1250 ) = P ( Z < 1250 − 1200 250 / 100 ) = P ( Z < 2 ) = 0.9772 P(\bar{x} < 1250) = P(Z < \frac{1250-1200}{250 / \sqrt{100}}) \\
= P(Z< 2) \\
= 0.9772 P ( x ˉ < 1250 ) = P ( Z < 250/ 100 1250 − 1200 ) = P ( Z < 2 ) = 0.9772
c.
P ( 1150 < x ˉ < 1250 ) = P ( x ˉ < 1250 ) − P ( x ˉ < 1150 ) = P ( Z < 1250 − 1200 250 / 100 ) − P ( Z < 1150 − 1200 250 / 100 ) = P ( Z < 2 ) − P ( Z < − 2 ) = 0.9772 − 0.0227 = 0.9545 P(1150 < \bar{x} < 1250) = P(\bar{x} < 1250) -P(\bar{x} < 1150) \\
= P(Z < \frac{1250-1200}{250 / \sqrt{100}}) -P(Z < \frac{1150-1200}{250 / \sqrt{100}}) \\
= P(Z< 2) -P(Z< -2) \\
= 0.9772 -0.0227 \\
= 0.9545 P ( 1150 < x ˉ < 1250 ) = P ( x ˉ < 1250 ) − P ( x ˉ < 1150 ) = P ( Z < 250/ 100 1250 − 1200 ) − P ( Z < 250/ 100 1150 − 1200 ) = P ( Z < 2 ) − P ( Z < − 2 ) = 0.9772 − 0.0227 = 0.9545
Comments