Question #263945

Find and graph a linear regression equation that models the data.

  Temperature (oC)

No. of Ice cream sold

26

345

27

322

28

357

29

423

30

435



1
Expert's answer
2021-11-11T12:27:31-0500




XYXYX2Y226345897067611902527322869472910368428357999678412744929423122678411789293043513050900189225Sum=1401882529773930718312\def\arraystretch{1.5} \begin{array}{c:c:c:c:c:c} & X & Y & XY & X^2 & Y^2\\ \hline & 26 & 345 & 8970 & 676 & 119025\\ & 27 & 322 & 8694 & 729 & 103684\\ & 28 & 357 & 9996 & 784 & 127449\\ & 29 & 423 & 12267 & 841 & 178929\\ & 30 & 435 & 13050 & 900 & 189225\\ Sum= & 140 & 1882 & 52977 & 3930 & 718312\\ \end{array}Xˉ=1niXi=1405=28\bar{X}=\dfrac{1}{n}\sum_iX_i=\dfrac{140}{5}=28

Yˉ=1niYi=18825=376.4\bar{Y}=\dfrac{1}{n}\sum_iY_i=\dfrac{1882}{5}=376.4

SSXX=i(XiXˉ)2=10SS_{XX}=\sum_i(X_i-\bar{X})^2=10

SSYY=i(YiYˉ)2=9927.2SS_{YY}=\sum_i(Y_i-\bar{Y})^2=9927.2

SSXY=i(XiXˉ)(YiYˉ)=281SS_{XY}=\sum_i(X_i-\bar{X})(Y_i-\bar{Y})=281

m=slope=SSXYSSXX=28110=28.1m=slope=\dfrac{SS_{XY}}{SS_{XX}}=\dfrac{281}{10}=28.1

n=YˉmXˉn=\bar{Y}-m\bar{X}

=376.428.1(28)=376.4-28.1(28)

=410.4=-410.4

Therefore, we find that the regression equation is:


Y=410.4+28.1XY=-410.4+28.1X



Correlation coefficient:


r=SSXYSSXXSSYYr=\dfrac{SS_{XY}}{\sqrt{SS_{XX}}\sqrt{SS_{YY}}}

=281109927.2=0.8918523=\dfrac{281}{\sqrt{10}\sqrt{9927.2}}=0.8918523

We have strong positive correlation.

The regression equation is:


Y=410.4+28.1XY=-410.4+28.1X


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS