Find the M. D. & variance of the following distribution. X 2 3 4 5 6 7 8 9 10 Y 1 1 2 4 4 3 7 5 3
"=\\dfrac{2(1)+3(1)+4(2)+5(4)+6(4)}{1+1+2+4+4+3+7+5+3}"
"+\\dfrac{7(3)+8(7)+9(5)+10(3)}{1+1+2+4+4+3+7+5+3}"
"=\\dfrac{209}{30}"
i)
"\\sum f_i|x_i-\\bar{x}|=|2-\\dfrac{209}{30}|(1)+|3-\\dfrac{209}{30}|(1)""+|4-\\dfrac{209}{30}|(2)+|5-\\dfrac{209}{30}|(4)+|6-\\dfrac{209}{30}|(4)"
"+|7-\\dfrac{209}{30}|(3)+|8-\\dfrac{209}{30}|(7)+|9-\\dfrac{209}{30}|(5)"
"+|10-\\dfrac{209}{30}|(3)=\\dfrac{1596}{30}=\\dfrac{532}{10}"
"MD=\\dfrac{\\sum f_i|x_i-\\bar{x}|}{\\sum f_i}=\\dfrac{\\dfrac{532}{10}}{30}=\\dfrac{532}{300}"
"=\\dfrac{133}{75}\\approx1.773333"
ii)
"=(2-\\dfrac{209}{30})^2(1)+(3-\\dfrac{209}{30})^2(1)+(4-\\dfrac{209}{30})^2(2)"
"+(8-\\dfrac{209}{30})^2(7)+(9-\\dfrac{209}{30})^2(5)+(10-\\dfrac{209}{30})^2(3)"
"=\\dfrac{119670}{900}=\\dfrac{3989}{30}\\approx132.9667"
Comments
Leave a comment