Determine the sample size necessary to estimate a population proportion to within 0.03 with 90%
confidence assuming you have no knowledge of the approximate value of the population proportion.
(b)    Using the sample size obtained in (a) and pˆ = 0.75
Estimate the population with 90% confidence
(a):
Margin of error (E) = 0.03
Z value at 90% confidence interval = 1.645
"E=Z\\times\\sqrt{\\frac{p\\times(1-p)}{n}}"
"0.03=1.645\\times\\sqrt{\\frac{0.5\\times(1-0.5)}{n}}"
Square both sides;
"0.0009=2.71\\times\\frac{0.5\\times(1-0.5)}{n}"
"n= \\frac{2.71\\times0.25}{0.0009}=751.67"
Sample size = 752
(b):
pˆ = 0.75
sample size = 752
"p\\pm Z\\times\\sqrt{\\frac{p\\times(1-p)}{n}}"
"0.75\\pm 1.645\\times\\sqrt{\\frac{0.75\\times(1-0.75)}{752}}"
"0.75\\pm0.026"
0.724 to 0.776
Comments
Leave a comment