Let X be continuous with pdf(x) = 3x^2 if 0 < x < 1, and zero otherwise,
a) Find E(X).
b)Find Var(X).
c)Find E(X').
d)Find E(3X - 5X^2 + 1).
a)
"=\\dfrac{3}{4}"
b)
"=\\dfrac{3}{5}"
"Var(X)=E(X^2)-(E(X))^2=\\dfrac{3}{5}-(\\dfrac{3}{4})^2"
"=\\dfrac{3}{80}"
c)
"=\\dfrac{3}{r+3}, r\\not=-3"
"E(X^{-3})=\\displaystyle\\int_{-\\infin}^{\\infin}x^{-3}f(x)dx=\\displaystyle\\int_{0}^{1}x^{-3}(3x^2)dx"
"=[3\\ln(|x|)]\\begin{matrix}\n 1 \\\\\n 0\n\\end{matrix}=does \\ not\\ exist"
d)
"=3(\\dfrac{3}{4})-5(\\dfrac{3}{5})+1=\\dfrac{1}{4}"
Comments
Leave a comment