Question #261931

Let X be continuous with pdf(x) = 3x^2 if 0 < x < 1, and zero otherwise,

a) Find E(X).

b)Find Var(X).

c)Find E(X').

d)Find E(3X - 5X^2 + 1).


1
Expert's answer
2021-11-09T16:29:22-0500

a)


E(X)=xf(x)dx=01x(3x2)dxE(X)=\displaystyle\int_{-\infin}^{\infin}xf(x)dx=\displaystyle\int_{0}^{1}x(3x^2)dx

=34=\dfrac{3}{4}

b)


E(X2)=x2f(x)dx=01x2(3x2)dxE(X^2)=\displaystyle\int_{-\infin}^{\infin}x^2f(x)dx=\displaystyle\int_{0}^{1}x^2(3x^2)dx

=35=\dfrac{3}{5}

Var(X)=E(X2)(E(X))2=35(34)2Var(X)=E(X^2)-(E(X))^2=\dfrac{3}{5}-(\dfrac{3}{4})^2

=380=\dfrac{3}{80}

c)


E(Xr)=xrf(x)dx=01xr(3x2)dxE(X^r)=\displaystyle\int_{-\infin}^{\infin}x^rf(x)dx=\displaystyle\int_{0}^{1}x^r(3x^2)dx

=3r+3,r3=\dfrac{3}{r+3}, r\not=-3


E(X3)=x3f(x)dx=01x3(3x2)dxE(X^{-3})=\displaystyle\int_{-\infin}^{\infin}x^{-3}f(x)dx=\displaystyle\int_{0}^{1}x^{-3}(3x^2)dx

=[3ln(x)]10=does not exist=[3\ln(|x|)]\begin{matrix} 1 \\ 0 \end{matrix}=does \ not\ exist

d)


E(3X5X2+1)=3E(X)5E(X2)+1E(3X-5X^2+1)=3E(X)-5E(X^2)+1

=3(34)5(35)+1=14=3(\dfrac{3}{4})-5(\dfrac{3}{5})+1=\dfrac{1}{4}


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS