A function f(x) has the following form:
f(x)=kx 1<x<∞
and zero otherwise.
a)For what values of k is f(x) a pdf?
b)Find the CDF based on (a).
c)For what values of k does E(X) exist?
a)
"\\displaystyle\\int_{-\\infin}^{\\infin}f(x)dx=1"Then
"k\\not=0"
"\\displaystyle\\int_{1}^{\\infin}kx^{-(k+1)}dx=\\lim\\limits_{A\\to\\infin}\\bigg[\\dfrac{k}{-(k+1)+1}x^{-(k+1)+1}\\bigg]\\begin{matrix}\n A \\\\\n 1\n\\end{matrix}""=-\\lim\\limits_{A\\to\\infin}A^{-k}+1=1"
"-\\lim\\limits_{A\\to\\infin}A^{-k}=0=>k>0"
Answer: "k>0"
b)
"F(x)=0, x<1"
"F(x)=\\displaystyle\\int_{1}^{x} ky^{-(k+1)}dy"
"=\\bigg[\\dfrac{k}{-(k+1)+1}y^{-(k+1)+1}\\bigg]\\begin{matrix}\n x \\\\\n 1\n\\end{matrix}=-x^{-k}+1"
Answer:
"F(x) = \\begin{cases}\n 0 &x<1 \\\\\n 1-x^{-k} &1\\leq x<\\infin \\\\\n\\end{cases}, k>0"
c)
"=\\lim\\limits_{A\\to\\infin}\\bigg[\\dfrac{k}{-(k+1)+2}x^{-(k+1)+2}\\bigg]\\begin{matrix}\n A \\\\\n 1\n\\end{matrix}"
"=-\\dfrac{k}{k-1}\\lim\\limits_{A\\to\\infin}A^{-k+1}+\\dfrac{k}{k-1}, k>1"
If "k=1"
"=\\lim\\limits_{A\\to\\infin}\\big[k\\ln(|x|)\\big]\\begin{matrix}\n A \\\\\n 1\n\\end{matrix}=does\\ not\\ exist"
Answer:
"E(X)" exists for "k>1."
Comments
Leave a comment