1. Mean
μ = 1 + 3 + 5 + 7 + 9 5 = 5 \mu=\dfrac{1+3+5+7+9}{5}=5 μ = 5 1 + 3 + 5 + 7 + 9 = 5 Variance
σ 2 = 1 5 ( ( 2 − 3.4 ) 2 + ( 6 − 2.4 ) 2 + ( 8 − 3.4 ) 2 \sigma^2=\dfrac{1}{5}\big((2-3.4)^2+(6-2.4)^2+(8-3.4)^2 σ 2 = 5 1 ( ( 2 − 3.4 ) 2 + ( 6 − 2.4 ) 2 + ( 8 − 3.4 ) 2 ( 0 − 3.4 ) 2 + ( 1 − 3.4 ) 2 ) = 9.44 (0-3.4)^2+(1-3.4)^2\big)=9.44 ( 0 − 3.4 ) 2 + ( 1 − 3.4 ) 2 ) = 9.44
Standard deviation
σ = σ 2 = 9.44 ≈ 3.0725 \sigma=\sqrt{\sigma^2}=\sqrt{9.44}\approx3.0725 σ = σ 2 = 9.44 ≈ 3.0725
2. We have population values 2 , 6 , 8 , 0 , 1 2,6,8,0,1 2 , 6 , 8 , 0 , 1 population size N = 5 N=5 N = 5 and sample size n = 2. n=2. n = 2. Thus, the number of possible samples which can be drawn without replacement is
( N n ) = ( 5 2 ) = 10 \dbinom{N}{n}=\dbinom{5}{2}=10 ( n N ) = ( 2 5 ) = 10 S a m p l e S a m p l e S a m p l e m e a n N o . v a l u e s ( X ˉ ) 1 2 , 6 4 2 2 , 8 5 3 2 , 0 1 4 2 , 1 1.5 5 6 , 8 7 6 6 , 0 3 7 6 , 1 3.5 8 8 , 0 4 9 8 , 1 4.5 10 0 , 1 0.5 \def\arraystretch{1.5}
\begin{array}{c:c:c}
Sample & Sample & Sample \ mean \\
No. & values & (\bar{X}) \\ \hline
1 & 2,6 & 4 \\
\hdashline
2 & 2,8 & 5 \\
\hdashline
3 & 2,0 & 1 \\
\hdashline
4 & 2,1 & 1.5 \\
\hdashline
5 & 6,8 & 7 \\
\hdashline
6 & 6,0 & 3 \\
\hdashline
7 & 6,1 & 3.5 \\
\hdashline
8 & 8,0 & 4 \\
\hdashline
9 & 8,1 & 4.5 \\
\hdashline
10 & 0,1 & 0.5 \\ \hline
\end{array} S am pl e N o . 1 2 3 4 5 6 7 8 9 10 S am pl e v a l u es 2 , 6 2 , 8 2 , 0 2 , 1 6 , 8 6 , 0 6 , 1 8 , 0 8 , 1 0 , 1 S am pl e m e an ( X ˉ ) 4 5 1 1.5 7 3 3.5 4 4.5 0.5 3. The sampling distribution of the sample means.
X ˉ f f ( X ˉ ) X ˉ f ( X ˉ ) X ˉ 2 f ( X ˉ ) 1 / 2 1 1 / 10 1 / 20 1 / 40 1 1 1 / 10 2 / 20 4 / 40 3 / 2 1 1 / 10 3 / 20 9 / 40 3 1 1 / 10 6 / 20 36 / 40 7 / 2 1 1 / 10 7 / 20 49 / 40 4 2 2 / 10 16 / 20 128 / 40 9 / 2 1 1 / 10 9 / 20 81 / 40 5 1 1 / 10 10 / 20 100 / 40 7 1 1 / 10 14 / 20 196 / 40 T o t a l 10 1 68 / 20 604 / 40 \def\arraystretch{1.5}
\begin{array}{c:c:c:c:c}
\bar{X} & f & f(\bar{X}) & \bar{X}f(\bar{X})& \bar{X}^2f(\bar{X}) \\ \hline
1/2 & 1& 1/10 & 1/20 & 1/40 \\
\hdashline
1 & 1 & 1/10 & 2/20 & 4/40 \\
\hdashline
3/2 & 1 & 1/10 & 3/20 & 9/40 \\
\hdashline
3 & 1 & 1/10 & 6/20 & 36/40 \\
\hdashline
7/2 & 1 & 1/10 & 7/20 & 49/40 \\
\hdashline
4 & 2 & 2/10 & 16/20 & 128/40 \\
\hdashline
9/2 & 1& 1/10 & 9/20 & 81/40 \\
\hdashline
5 & 1& 1/10 & 10/20 & 100/40 \\
\hdashline
7 & 1 & 1/10 & 14/20 & 196/40 \\
\hdashline
Total & 10 & 1 & 68/20 & 604/40 \\ \hline
\end{array} X ˉ 1/2 1 3/2 3 7/2 4 9/2 5 7 T o t a l f 1 1 1 1 1 2 1 1 1 10 f ( X ˉ ) 1/10 1/10 1/10 1/10 1/10 2/10 1/10 1/10 1/10 1 X ˉ f ( X ˉ ) 1/20 2/20 3/20 6/20 7/20 16/20 9/20 10/20 14/20 68/20 X ˉ 2 f ( X ˉ ) 1/40 4/40 9/40 36/40 49/40 128/40 81/40 100/40 196/40 604/40 4.
E ( X ˉ ) = ∑ X ˉ f ( X ˉ ) = 68 20 = 3.4 E(\bar{X})=\sum\bar{X}f(\bar{X})=\dfrac{68}{20}=3.4 E ( X ˉ ) = ∑ X ˉ f ( X ˉ ) = 20 68 = 3.4 The mean of the sampling distribution of the sample means is equal to the
the mean of the population.
E ( X ˉ ) = 3.4 = μ E(\bar{X})=3.4=\mu E ( X ˉ ) = 3.4 = μ 5.
V a r ( X ˉ ) = ∑ X ˉ 2 f ( X ˉ ) − ( ∑ X ˉ f ( X ˉ ) ) 2 Var(\bar{X})=\sum\bar{X}^2f(\bar{X})-(\sum\bar{X}f(\bar{X}))^2 Va r ( X ˉ ) = ∑ X ˉ 2 f ( X ˉ ) − ( ∑ X ˉ f ( X ˉ ) ) 2 = 604 40 − ( 68 20 ) 2 = 1416 400 = 354 100 = 3.54 =\dfrac{604}{40}-(\dfrac{68}{20})^2=\dfrac{1416}{400}=\dfrac{354}{100}=3.54 = 40 604 − ( 20 68 ) 2 = 400 1416 = 100 354 = 3.54 V a r ( X ˉ ) = 354 100 ≈ 1.8815 \sqrt{Var(\bar{X})}=\sqrt{\dfrac{354}{100}}\approx1.8815 Va r ( X ˉ ) = 100 354 ≈ 1.8815 Verification:
V a r ( X ˉ ) = σ 2 n ( N − n N − 1 ) = 9.44 2 ( 5 − 2 5 − 1 ) Var(\bar{X})=\dfrac{\sigma^2}{n}(\dfrac{N-n}{N-1})=\dfrac{9.44}{2}(\dfrac{5-2}{5-1}) Va r ( X ˉ ) = n σ 2 ( N − 1 N − n ) = 2 9.44 ( 5 − 1 5 − 2 ) = 3.54 , T r u e =3.54, True = 3.54 , T r u e
Comments
Leave a comment