Answer to Question #260529 in Statistics and Probability for Ella

Question #260529



A population consists of the five numbers: 1, 3, 5, 7, and 9.


Consider samples of size 3 that can be drawn from this population



2 points for every Sample and 1 point for the corresponding Mean of that Sample

1
Expert's answer
2021-11-03T18:50:02-0400

1. Mean



μ=1+3+5+7+95=5\mu=\dfrac{1+3+5+7+9}{5}=5

Variance



σ2=15((23.4)2+(62.4)2+(83.4)2\sigma^2=\dfrac{1}{5}\big((2-3.4)^2+(6-2.4)^2+(8-3.4)^2(03.4)2+(13.4)2)=9.44(0-3.4)^2+(1-3.4)^2\big)=9.44


Standard deviation



σ=σ2=9.443.0725\sigma=\sqrt{\sigma^2}=\sqrt{9.44}\approx3.0725



2. We have population values 2,6,8,0,12,6,8,0,1 population size N=5N=5 and sample size n=2.n=2. Thus, the number of possible samples which can be drawn without replacement is



(Nn)=(52)=10\dbinom{N}{n}=\dbinom{5}{2}=10SampleSampleSample meanNo.values(Xˉ)12,6422,8532,0142,11.556,8766,0376,13.588,0498,14.5100,10.5\def\arraystretch{1.5} \begin{array}{c:c:c} Sample & Sample & Sample \ mean \\ No. & values & (\bar{X}) \\ \hline 1 & 2,6 & 4 \\ \hdashline 2 & 2,8 & 5 \\ \hdashline 3 & 2,0 & 1 \\ \hdashline 4 & 2,1 & 1.5 \\ \hdashline 5 & 6,8 & 7 \\ \hdashline 6 & 6,0 & 3 \\ \hdashline 7 & 6,1 & 3.5 \\ \hdashline 8 & 8,0 & 4 \\ \hdashline 9 & 8,1 & 4.5 \\ \hdashline 10 & 0,1 & 0.5 \\ \hline \end{array}

3. The sampling distribution of the sample means.



Xˉff(Xˉ)Xˉf(Xˉ)Xˉ2f(Xˉ)1/211/101/201/40111/102/204/403/211/103/209/40311/106/2036/407/211/107/2049/40422/1016/20128/409/211/109/2081/40511/1010/20100/40711/1014/20196/40Total10168/20604/40\def\arraystretch{1.5} \begin{array}{c:c:c:c:c} \bar{X} & f & f(\bar{X}) & \bar{X}f(\bar{X})& \bar{X}^2f(\bar{X}) \\ \hline 1/2 & 1& 1/10 & 1/20 & 1/40 \\ \hdashline 1 & 1 & 1/10 & 2/20 & 4/40 \\ \hdashline 3/2 & 1 & 1/10 & 3/20 & 9/40 \\ \hdashline 3 & 1 & 1/10 & 6/20 & 36/40 \\ \hdashline 7/2 & 1 & 1/10 & 7/20 & 49/40 \\ \hdashline 4 & 2 & 2/10 & 16/20 & 128/40 \\ \hdashline 9/2 & 1& 1/10 & 9/20 & 81/40 \\ \hdashline 5 & 1& 1/10 & 10/20 & 100/40 \\ \hdashline 7 & 1 & 1/10 & 14/20 & 196/40 \\ \hdashline Total & 10 & 1 & 68/20 & 604/40 \\ \hline \end{array}

4.



E(Xˉ)=Xˉf(Xˉ)=6820=3.4E(\bar{X})=\sum\bar{X}f(\bar{X})=\dfrac{68}{20}=3.4

The mean of the sampling distribution of the sample means is equal to the

the mean of the population.



E(Xˉ)=3.4=μE(\bar{X})=3.4=\mu

5.


Var(Xˉ)=Xˉ2f(Xˉ)(Xˉf(Xˉ))2Var(\bar{X})=\sum\bar{X}^2f(\bar{X})-(\sum\bar{X}f(\bar{X}))^2=60440(6820)2=1416400=354100=3.54=\dfrac{604}{40}-(\dfrac{68}{20})^2=\dfrac{1416}{400}=\dfrac{354}{100}=3.54Var(Xˉ)=3541001.8815\sqrt{Var(\bar{X})}=\sqrt{\dfrac{354}{100}}\approx1.8815

Verification:


Var(Xˉ)=σ2n(NnN1)=9.442(5251)Var(\bar{X})=\dfrac{\sigma^2}{n}(\dfrac{N-n}{N-1})=\dfrac{9.44}{2}(\dfrac{5-2}{5-1})=3.54,True=3.54, True

Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment