Question #260502

Referring to the random variables whose joint probability distribution is given


1
Expert's answer
2021-12-15T04:05:58-0500

Question is incomplete.

Let us take an example related to given problem.


Referring to the random variables whose joint probability density function of 𝑋 and 𝑌 is given by


𝑓(𝑥, 𝑦) = {


𝑥 + 𝑦


3


0 ≤ 𝑥 ≤ 1, 0 ≤ 𝑦 ≤ 2


0 𝑒𝑙𝑠𝑒𝑤ℎ𝑒𝑟𝑒


Find the two lines of regression.


Solution:

lines of regression:

y=a1x+b1y=a_1x+b_1

a1=σXY/σX2,b1=μYa1μXa_1=\sigma_{XY}/\sigma^2_X,b_1=\mu_Y-a_1\mu_X


x=a2y+b2x=a_2y+b_2

a2=σXY/σY2,b2=μXa2μYa_2=\sigma_{XY}/\sigma^2_Y,b_2=\mu_X-a_2\mu_Y


covariance:

σXY=(xμX)(yμY)f(x,y)dydx\sigma_{XY}=\iint (x-\mu_X)(y-\mu_Y)f(x,y)dydx


fX(x)=02f(x,y)dy=1302(x+y)dy=13(2x+1)f_X(x)=\int^2_0 f(x,y)dy=\frac{1}{3}\int^2_0 (x+y)dy=\frac{1}{3}(2x+1)


fY(y)=01f(x,y)dx=1301(x+y)dx=13(1/2+y)f_Y(y)=\int^1_0 f(x,y)dx=\frac{1}{3}\int^1_0 (x+y)dx=\frac{1}{3}(1/2+y)


μX=01xfX(x)dx=1301x(2x+1)dx=13(2/3+1/2)=7/18\mu_X=\int^1_0 xf_X(x)dx=\frac{1}{3}\int^1_0 x(2x+1)dx=\frac{1}{3}(2/3+1/2)=7/18


μY=02yfY(y)dy=1302y(1/2+y)dy=13(1+8/3)=11/9\mu_Y=\int^2_0 yf_Y(y)dy=\frac{1}{3}\int^2_0 y(1/2+y)dy=\frac{1}{3}(1+8/3)=11/9


σX=E(X2)μX2\sigma_X=\sqrt{E(X^2)-\mu_X^2}


E(X2)=01x2fX(x)dx=1301x2(2x+1)dx=13(1/2+1/3)=5/18E(X^2)=\int^1_0 x^2f_X(x)dx=\frac{1}{3}\int^1_0 x^2(2x+1)dx=\frac{1}{3}(1/2+1/3)=5/18


σX=5/18(7/18)2=41/18=0.356\sigma_X=\sqrt{5/18-(7/18)^2}=\sqrt{41}/18=0.356


σY=E(Y2)μY2\sigma_Y=\sqrt{E(Y^2)-\mu_Y^2}


E(Y2)=02x2fY(y)dy=1302y2(1/2+y)dy=13(4/3+4)=16/9E(Y^2)=\int^2_0 x^2f_Y(y)dy=\frac{1}{3}\int^2_0 y^2(1/2+y)dy=\frac{1}{3}(4/3+4)=16/9


σY=16/9(11/9)2=23/9=0.533\sigma_Y=\sqrt{16/9-(11/9)^2}=\sqrt{23}/9=0.533


σXY=130102(x7/18)(y11/9)(x+y)dydx=\sigma_{XY}=\frac{1}{3}\intop^1_0 \intop^2_0 (x-7/18)(y-11/9)(x+y)dydx=


=1301(x7/18)(xy2/211xy/9+y3/311y2/18)02dx==\frac{1}{3}\intop^1_0(x-7/18)(xy^2/2-11xy/9+y^3/3-11y^2/18)|^2_0dx=


=1301(x7/18)(2x22x/9+8/344/18)dx==\frac{1}{3}\intop^1_0(x-7/18)(2x-22x/9+8/3-44/18)dx=


=1301(x0.39)(0.44x+0.22)dx=13(0.15+0.11+0.090.09)=0.013=\frac{1}{3}\intop^1_0(x-0.39)(-0.44x+0.22)dx=\frac{1}{3}(-0.15+0.11+0.09-0.09)=-0.013


a1=0.013/0.3562=0.1a_1=-0.013/0.356^2=-0.1

b1=11/9+0.17/18=1.26b_1=11/9+0.1\cdot7/18=1.26

y=0.1x+1.26y=-0.1x+1.26


a2=0.013/0.5332=0.05a_2=-0.013/0.533^2=-0.05

b1=7/18+0.0511/9=0.45b_1=7/18+0.05\cdot11/9=0.45

x=0.05y+0.45x=-0.05y+0.45



Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS