Referring to the random variables whose joint probability distribution is given
Question is incomplete.
Let us take an example related to given problem.
Referring to the random variables whose joint probability density function of π and π is given by
π(π₯, π¦) = {
π₯ + π¦
3
0 β€ π₯ β€ 1, 0 β€ π¦ β€ 2
0 πππ ππ€βπππ
Find the two lines of regression.
Solution:
lines of regression:
"y=a_1x+b_1"
"a_1=\\sigma_{XY}\/\\sigma^2_X,b_1=\\mu_Y-a_1\\mu_X"
"x=a_2y+b_2"
"a_2=\\sigma_{XY}\/\\sigma^2_Y,b_2=\\mu_X-a_2\\mu_Y"
covariance:
"\\sigma_{XY}=\\iint (x-\\mu_X)(y-\\mu_Y)f(x,y)dydx"
"f_X(x)=\\int^2_0 f(x,y)dy=\\frac{1}{3}\\int^2_0 (x+y)dy=\\frac{1}{3}(2x+1)"
"f_Y(y)=\\int^1_0 f(x,y)dx=\\frac{1}{3}\\int^1_0 (x+y)dx=\\frac{1}{3}(1\/2+y)"
"\\mu_X=\\int^1_0 xf_X(x)dx=\\frac{1}{3}\\int^1_0 x(2x+1)dx=\\frac{1}{3}(2\/3+1\/2)=7\/18"
"\\mu_Y=\\int^2_0 yf_Y(y)dy=\\frac{1}{3}\\int^2_0 y(1\/2+y)dy=\\frac{1}{3}(1+8\/3)=11\/9"
"\\sigma_X=\\sqrt{E(X^2)-\\mu_X^2}"
"E(X^2)=\\int^1_0 x^2f_X(x)dx=\\frac{1}{3}\\int^1_0 x^2(2x+1)dx=\\frac{1}{3}(1\/2+1\/3)=5\/18"
"\\sigma_X=\\sqrt{5\/18-(7\/18)^2}=\\sqrt{41}\/18=0.356"
"\\sigma_Y=\\sqrt{E(Y^2)-\\mu_Y^2}"
"E(Y^2)=\\int^2_0 x^2f_Y(y)dy=\\frac{1}{3}\\int^2_0 y^2(1\/2+y)dy=\\frac{1}{3}(4\/3+4)=16\/9"
"\\sigma_Y=\\sqrt{16\/9-(11\/9)^2}=\\sqrt{23}\/9=0.533"
"\\sigma_{XY}=\\frac{1}{3}\\intop^1_0 \\intop^2_0 (x-7\/18)(y-11\/9)(x+y)dydx="
"=\\frac{1}{3}\\intop^1_0(x-7\/18)(xy^2\/2-11xy\/9+y^3\/3-11y^2\/18)|^2_0dx="
"=\\frac{1}{3}\\intop^1_0(x-7\/18)(2x-22x\/9+8\/3-44\/18)dx="
"=\\frac{1}{3}\\intop^1_0(x-0.39)(-0.44x+0.22)dx=\\frac{1}{3}(-0.15+0.11+0.09-0.09)=-0.013"
"a_1=-0.013\/0.356^2=-0.1"
"b_1=11\/9+0.1\\cdot7\/18=1.26"
"y=-0.1x+1.26"
"a_2=-0.013\/0.533^2=-0.05"
"b_1=7\/18+0.05\\cdot11\/9=0.45"
"x=-0.05y+0.45"
Comments
Leave a comment