Question #258505

Let X1,X2,..,XnX_1, X_2,….., X_n be independently and identically distributed b(1, p) random variables. Obtain confidence interval for p using Chebychev’s inequality.


1
Expert's answer
2021-11-01T10:13:12-0400

The chebyshevschebyshev's inequality is given as,

p(xμ<kσ)1(1/k2)p(|x-\mu|\lt k\sigma )\geqslant 1-(1/k^2)

where ,

xx is the point estimate of the parameter whose confidence interval needs to be determined.

σ\sigma is the standard deviation of that parameter.

This question requires us to determine the confidence interval for the parameter pp of the binomial distribution.

Given the random variables X1,X2,X3,...,XnX_1,X_2,X_3,...,X_n , we need to determine the point estimate for pp.

To do so, let us define the random variable Y=i=1nXi=X1+X2+....+XnY=\sum ^n_{i=1}X_i=X_1+X_2+....+X_n ,

Let p^\hat{p} be the point estimate for pp then p^=i=1nXi/n=Y/n\hat{p}=\sum^n_{i=1}X_i/n=Y/n .

The standard deviation(sd(p))(sd(p)) for pp is given as,

sd(p)=p^(1p^)/nsd(p)=\sqrt{\hat{p}(1-\hat{p})/n} .

Now in the chebyshevschebyshev's inequality stated above we need to find the value for kk using the 95% confidence.

The right hand side of the inequality is equated with 95% in order to find kk as below,

1(1/k2)=0.95    0.05=1/k2    k2=20    k=4.5(1dp)1-(1/k^2)=0.95\implies0.05=1/k^2\implies k^2=20\implies k=4.5(1dp)

A 95% confidence interval for pp is given as,

p^p<ksd(p)|\hat{p}-p|\lt k*sd(p)

This can be re-written as,

p^ksd(p)<p<p^+ksd(p)............(i)\hat{p}-k*sd(p)\lt p\lt\hat{p}+k*sd(p)............(i)

Replacing for kk and sd(p)sd(p) in equation(i)equation (i) we have,

p^4.5p^(1p^)/n<p<p^+4.5p^(1p^)/n\hat{p}-4.5*\sqrt{\hat{p}(1-\hat{p})/n}\lt p\lt \hat{p}+4.5*\sqrt{\hat{p}(1-\hat{p})/n} .

Therefore the 95% confidence interval for the parameter pp is given as,

C.I=(p^4.5p^(1p^)/n, p^+4.5p^(1p^)/n)C.I=(\hat{p}-4.5*\sqrt{\hat{p}(1-\hat{p})/n },\space \hat{p}+4.5*\sqrt{\hat{p}(1-\hat{p})/n })


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS