Answer to Question #258487 in Statistics and Probability for justine

Question #258487

A population consists of four numbesr (3, 8, 10, 15). Consider all possible sample of size 2 that can be drawn without replacement from the population.

Find the following:

a. Population Mean

b. Population Variance

c. Population Standard Deviation

d. The Mean of the sampling distribution of means

e. The Standard deviation of the sampling distribution of means


1
Expert's answer
2021-10-29T02:52:18-0400

a.

 We have population values 3,8,10,15,3,8,10,15, population size N=4N=4

μ=3+8+10+154=9\mu=\dfrac{3+8+10+15}{4}=9

b.


σ2=14((39)2+(89)2+(109)2\sigma^2=\dfrac{1}{4}((3-9)^2+(8-9)^2+(10-9)^2

+(159)2)=18.5+(15-9)^2)=18.5

c.


σ=σ2=18.54.3012\sigma=\sqrt{\sigma^2}=\sqrt{18.5}\approx4.3012

d. We have population values 3,8,10,15,3,8,10,15, population size N=4N=4 and sample size n=2.n=2. Thus, the number of possible samples which can be drawn without replacement is



(Nn)=(42)=6\dbinom{N}{n}=\dbinom{4}{2}=6SampleSampleSample meanNo.values(Xˉ)13,85.523,106.533,15948,10958,1511.5610,1512.5\def\arraystretch{1.5} \begin{array}{c:c:c} Sample & Sample & Sample \ mean \\ No. & values & (\bar{X}) \\ \hline 1 & 3,8 & 5.5 \\ \hdashline 2 & 3,10 & 6.5 \\ \hdashline 3 & 3,15 & 9 \\ \hdashline 4 & 8,10 & 9 \\ \hdashline 5 & 8,15 & 11.5 \\ \hdashline 6 & 10,15 & 12.5 \\ \hline \end{array}

The sampling distribution of the sample means.



Xˉff(Xˉ)Xˉf(Xˉ)Xˉ2f(Xˉ)5.511/611/12121/246.511/613/12169/24921/332711.511/623/12529/2412.511/625/12625/24Total619523/6\def\arraystretch{1.5} \begin{array}{c:c:c:c:c:c} & \bar{X} & f & f(\bar{X}) & \bar{X}f(\bar{X})& \bar{X}^2f(\bar{X}) \\ \hline & 5.5 & 1 & 1/6 & 11/12 & 121/24 \\ \hdashline & 6.5 & 1& 1/6 & 13/12 & 169/24 \\ \hdashline & 9 & 2 & 1/3 & 3 & 27 \\ \hdashline & 11.5 & 1& 1/6 & 23/12 & 529/24 \\ \hdashline & 12.5 & 1 & 1/6 & 25/12 & 625/24 \\ \hdashline Total & & 6 & 1 & 9 & 523/6 \\ \hline \end{array}




E(Xˉ)=Xˉf(Xˉ)=9.8E(\bar{X})=\sum\bar{X}f(\bar{X})=9.8




μ=6+8+10+12+135=9.8\mu=\dfrac{6+8+10+12+13}{5}=9.8

The mean of the sampling distribution of the sample means is equal to the the mean of the population.



E(Xˉ)=μXˉ=9.8=μE(\bar{X})=\mu_{\bar{X}}=9.8=\mu



e.


Var(Xˉ)=Xˉ2f(Xˉ)(Xˉf(Xˉ))2Var(\bar{X})=\sum\bar{X}^2f(\bar{X})-(\sum\bar{X}f(\bar{X}))^2




=5236(9)2=376=\dfrac{523}{6}-(9)^2=\dfrac{37}{6}




σXˉ=Var(Xˉ)=3762.4833\sigma_{\bar{X}}=\sqrt{Var(\bar{X})}=\sqrt{\dfrac{37}{6}}\approx2.4833

Verification:


Var(Xˉ)=σ2n(NnN1)=18.52(4241)Var(\bar{X})=\dfrac{\sigma^2}{n}(\dfrac{N-n}{N-1})=\dfrac{18.5}{2}(\dfrac{4-2}{4-1})




=376,True=\dfrac{37}{6}, True

Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment