Question #257974

1.    Ajouin and Genie are a happy couple and have 4 lovely children. Is it more likely they will have two boys and two girls or three of the same sex and one of the other? Assume that the probability of a child being a boy is 0.5 and that the births are independent events. (5 points)

2.    A fair die is rolled 4 times. Let the random variable X denote the number of sixes that appear. Find FX(x). (5 points)


1
Expert's answer
2021-11-17T15:33:22-0500

1.



P(bbbb)=(12)4=116P(bbbb)=(\dfrac{1}{2})^4=\dfrac{1}{16}P(bbbg)=P(bbgb)=P(bgbb)=P(gbbb)P(bbbg)=P(bbgb)=P(bgbb)=P(gbbb)=(12)4=116=(\dfrac{1}{2})^4=\dfrac{1}{16}P(bbgg)=P(bgbg)=P(bggb)=P(gbbg)=P(gbgb)=P(ggbb)P(bbgg)=P(bgbg)=P(bggb)=P(gbbg)=P(gbgb)=P(ggbb)=(12)4=116=(\dfrac{1}{2})^4=\dfrac{1}{16}P(gggb)=P(ggbg)=P(gbgg)=P(bggg)P(gggb)=P(ggbg)=P(gbgg)=P(bggg)=(12)4=116=(\dfrac{1}{2})^4=\dfrac{1}{16}P(gggg)=(12)4=116P(gggg)=(\dfrac{1}{2})^4=\dfrac{1}{16}P(2 boys & 2 girls)=6(116)=38P(2\ boys\ \&\ 2\ girls)=6(\dfrac{1}{16})=\dfrac{3}{8}P(3 boys & 1 girl)+P(1 boy & 3 girls)P(3\ boys \ \&\ 1\ girl)+P(1\ boy \ \&\ 3\ girls)=4(116)+4(116)=12>38=4(\dfrac{1}{16})+4(\dfrac{1}{16})=\dfrac{1}{2}>\dfrac{3}{8}

It is more likely they will have three of the same sex and one of the other than two boys and two girls.


2. XBin(n,p)X\sim Bin(n, p)

n=4,p=16,q=1p=56n=4, p=\dfrac{1}{6}, q=1-p=\dfrac{5}{6}



P(X=0)=(40)(16)0(56)40=6251296P(X=0)=\dbinom{4}{0}(\dfrac{1}{6})^0(\dfrac{5}{6})^{4-0}=\dfrac{625}{1296}P(X=1)=(41)(16)1(56)41=5001296P(X=1)=\dbinom{4}{1}(\dfrac{1}{6})^1(\dfrac{5}{6})^{4-1}=\dfrac{500}{1296}P(X=2)=(42)(16)2(56)42=1501296P(X=2)=\dbinom{4}{2}(\dfrac{1}{6})^2(\dfrac{5}{6})^{4-2}=\dfrac{150}{1296}P(X=3)=(43)(16)3(56)43=201296P(X=3)=\dbinom{4}{3}(\dfrac{1}{6})^3(\dfrac{5}{6})^{4-3}=\dfrac{20}{1296}P(X=4)=(44)(16)4(56)44=11296P(X=4)=\dbinom{4}{4}(\dfrac{1}{6})^4(\dfrac{5}{6})^{4-4}=\dfrac{1}{1296}FX(x)={0,x<0625/1296,0x<11125/1296,1x<21275/1296,2x<31295/1296,3x<41,x4.F_X(x) = \begin{cases} 0, &x<0 \\ 625/1296, &0\leq x<1\\ 1125/1296, &1\leq x<2\\ 1275/1296, &2\leq x<3\\ 1295/1296, &3\leq x<4\\ 1, &x\geq 4. \end{cases}

Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS