1.
P ( b b b b ) = ( 1 2 ) 4 = 1 16 P(bbbb)=(\dfrac{1}{2})^4=\dfrac{1}{16} P ( bbbb ) = ( 2 1 ) 4 = 16 1 P ( b b b g ) = P ( b b g b ) = P ( b g b b ) = P ( g b b b ) P(bbbg)=P(bbgb)=P(bgbb)=P(gbbb) P ( bbb g ) = P ( bb g b ) = P ( b g bb ) = P ( g bbb ) = ( 1 2 ) 4 = 1 16 =(\dfrac{1}{2})^4=\dfrac{1}{16} = ( 2 1 ) 4 = 16 1 P ( b b g g ) = P ( b g b g ) = P ( b g g b ) = P ( g b b g ) = P ( g b g b ) = P ( g g b b ) P(bbgg)=P(bgbg)=P(bggb)=P(gbbg)=P(gbgb)=P(ggbb) P ( bb gg ) = P ( b g b g ) = P ( b gg b ) = P ( g bb g ) = P ( g b g b ) = P ( gg bb ) = ( 1 2 ) 4 = 1 16 =(\dfrac{1}{2})^4=\dfrac{1}{16} = ( 2 1 ) 4 = 16 1 P ( g g g b ) = P ( g g b g ) = P ( g b g g ) = P ( b g g g ) P(gggb)=P(ggbg)=P(gbgg)=P(bggg) P ( ggg b ) = P ( gg b g ) = P ( g b gg ) = P ( b ggg ) = ( 1 2 ) 4 = 1 16 =(\dfrac{1}{2})^4=\dfrac{1}{16} = ( 2 1 ) 4 = 16 1 P ( g g g g ) = ( 1 2 ) 4 = 1 16 P(gggg)=(\dfrac{1}{2})^4=\dfrac{1}{16} P ( gggg ) = ( 2 1 ) 4 = 16 1 P ( 2 b o y s & 2 g i r l s ) = 6 ( 1 16 ) = 3 8 P(2\ boys\ \&\ 2\ girls)=6(\dfrac{1}{16})=\dfrac{3}{8} P ( 2 b oys & 2 g i r l s ) = 6 ( 16 1 ) = 8 3 P ( 3 b o y s & 1 g i r l ) + P ( 1 b o y & 3 g i r l s ) P(3\ boys \ \&\ 1\ girl)+P(1\ boy \ \&\ 3\ girls) P ( 3 b oys & 1 g i r l ) + P ( 1 b oy & 3 g i r l s ) = 4 ( 1 16 ) + 4 ( 1 16 ) = 1 2 > 3 8 =4(\dfrac{1}{16})+4(\dfrac{1}{16})=\dfrac{1}{2}>\dfrac{3}{8} = 4 ( 16 1 ) + 4 ( 16 1 ) = 2 1 > 8 3 It is more likely they will have three of the same sex and one of the other than two boys and two girls.
2. X ∼ B i n ( n , p ) X\sim Bin(n, p) X ∼ B in ( n , p )
n = 4 , p = 1 6 , q = 1 − p = 5 6 n=4, p=\dfrac{1}{6}, q=1-p=\dfrac{5}{6} n = 4 , p = 6 1 , q = 1 − p = 6 5
P ( X = 0 ) = ( 4 0 ) ( 1 6 ) 0 ( 5 6 ) 4 − 0 = 625 1296 P(X=0)=\dbinom{4}{0}(\dfrac{1}{6})^0(\dfrac{5}{6})^{4-0}=\dfrac{625}{1296} P ( X = 0 ) = ( 0 4 ) ( 6 1 ) 0 ( 6 5 ) 4 − 0 = 1296 625 P ( X = 1 ) = ( 4 1 ) ( 1 6 ) 1 ( 5 6 ) 4 − 1 = 500 1296 P(X=1)=\dbinom{4}{1}(\dfrac{1}{6})^1(\dfrac{5}{6})^{4-1}=\dfrac{500}{1296} P ( X = 1 ) = ( 1 4 ) ( 6 1 ) 1 ( 6 5 ) 4 − 1 = 1296 500 P ( X = 2 ) = ( 4 2 ) ( 1 6 ) 2 ( 5 6 ) 4 − 2 = 150 1296 P(X=2)=\dbinom{4}{2}(\dfrac{1}{6})^2(\dfrac{5}{6})^{4-2}=\dfrac{150}{1296} P ( X = 2 ) = ( 2 4 ) ( 6 1 ) 2 ( 6 5 ) 4 − 2 = 1296 150 P ( X = 3 ) = ( 4 3 ) ( 1 6 ) 3 ( 5 6 ) 4 − 3 = 20 1296 P(X=3)=\dbinom{4}{3}(\dfrac{1}{6})^3(\dfrac{5}{6})^{4-3}=\dfrac{20}{1296} P ( X = 3 ) = ( 3 4 ) ( 6 1 ) 3 ( 6 5 ) 4 − 3 = 1296 20 P ( X = 4 ) = ( 4 4 ) ( 1 6 ) 4 ( 5 6 ) 4 − 4 = 1 1296 P(X=4)=\dbinom{4}{4}(\dfrac{1}{6})^4(\dfrac{5}{6})^{4-4}=\dfrac{1}{1296} P ( X = 4 ) = ( 4 4 ) ( 6 1 ) 4 ( 6 5 ) 4 − 4 = 1296 1 F X ( x ) = { 0 , x < 0 625 / 1296 , 0 ≤ x < 1 1125 / 1296 , 1 ≤ x < 2 1275 / 1296 , 2 ≤ x < 3 1295 / 1296 , 3 ≤ x < 4 1 , x ≥ 4. F_X(x) = \begin{cases}
0, &x<0 \\
625/1296, &0\leq x<1\\
1125/1296, &1\leq x<2\\
1275/1296, &2\leq x<3\\
1295/1296, &3\leq x<4\\
1, &x\geq 4.
\end{cases} F X ( x ) = ⎩ ⎨ ⎧ 0 , 625/1296 , 1125/1296 , 1275/1296 , 1295/1296 , 1 , x < 0 0 ≤ x < 1 1 ≤ x < 2 2 ≤ x < 3 3 ≤ x < 4 x ≥ 4.
Comments