Scores on a certain standardized test have a mean of 500, and a standard deviation of 100. How common is a score between 600 and 700? Calculate the probability.
μ=500σ=100P(600<X<700)=P(X<700)−P(X<600)=P(Z<700−500100)−P(Z<600−500100)=P(Z<2)−P(Z<1)=0.9772−0.8413=0.1359\mu=500 \\ \sigma= 100 \\ P(600<X<700) = P(X<700) -P(X<600) \\ = P(Z< \frac{700-500}{100}) -P(Z< \frac{600-500}{100}) \\ = P(Z< 2) -P(Z< 1) \\ = 0.9772 -0.8413 \\ = 0.1359μ=500σ=100P(600<X<700)=P(X<700)−P(X<600)=P(Z<100700−500)−P(Z<100600−500)=P(Z<2)−P(Z<1)=0.9772−0.8413=0.1359
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments