Question #256353

QUESTION 1 (15 MARKS)

In a butter-packing factory, the quantity of butter packed in a day using a certain

machine is normally distributed. In a particular day, 12 packets of butter were taken at

random from this production line, and their masses, measured in grams, were:

9.50 9.50 11.20 10.60 9.90 11.10

10.90 9.80 10.10 10.20 10.90 11.00

By using these measurements:

a. Point out the estimator that is used to estimate the mean parameter.

[ 3 marks ]

b. Explore the 95% confidence interval for the mean mass produced by this

machine. [12 marks ]

[Total : 15 marks]


1
Expert's answer
2021-10-26T03:16:51-0400

a.


xˉ=112(9.50+9.50+11.20+10.60+9.90+11.10\bar{x}=\dfrac{1}{12}(9.50+ 9.50+ 11.20+ 10.60+ 9.90+ 11.10

+10.90+9.80+10.10+10.20+10.90+11.00)+10.90 +9.80 +10.10 +10.20 +10.90+ 11.00)

=124.71210.39=\dfrac{124.7}{12}\approx10.39


A point estimate of the mean of a population is determined by calculating the mean of a sample drawn from the population.

Point estimate of population mean


μ^=μxˉ=10.39\hat{\mu}=\mu_{\bar{x}}=10.39

b.


s2=1121((9.5010.39)2+(9.5010.39)2s^2=\dfrac{1}{12-1}((9.50-10.39)^2+(9.50-10.39)^2

+(11.2010.39)2+(10.6010.39)2+(11.20-10.39)^2+(10.60-10.39)^2

+(9.9010.39)2+(11.1010.39)2+(9.90-10.39)^2+(11.10-10.39)^2

+(10.9010.39)2+(9.8010.39)2+(10.90-10.39)^2+(9.80-10.39)^2

+(10.1010.39)2+(10.2010.39)2+(10.10-10.39)^2+(10.20-10.39)^2


+(10.9010.39)2+(11.0010.39)2+(10.90-10.39)^2+(11.00-10.39)^2

0.399015\approx0.399015

s=s20.631676s=\sqrt{s^2}\approx0.631676

The critical value for α=0.05\alpha = 0.05 and df=n1=11df = n-1 = 11 degrees of freedom is tc=z1α/2;n1=2.200985.t_c = z_{1-\alpha/2; n-1} = 2.200985.

The corresponding confidence interval is computed as shown below:


CI=(xˉtc×sn,xˉ+tc×sn)CI=(\bar{x}-t_c\times\dfrac{s}{\sqrt{n}}, \bar{x}+t_c\times\dfrac{s}{\sqrt{n}})

=(10.392.200985×0.63167612,=(10.39-2.200985\times\dfrac{0.631676}{\sqrt{12}},

10.39+2.200985×0.63167612)10.39+2.200985\times\dfrac{0.631676}{\sqrt{12}})

=(9.989,10.791)=(9.989, 10.791)

Therefore, based on the data provided, the 95% confidence interval for the population mean is 9.989<μ<10.791,9.989 < \mu < 10.791 , which indicates that we are 95% confident that the true population mean μ\mu is contained by the interval (9.989,10.791).(9.989, 10.791).



Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS