Question #254822
  1. Records of a health insurance company show that 30% of its policyholders over 50 submit a claim during the year.  15 policyholders over 50 are selected at random; what is the probability that at least 10 will submit a claim during the year?  What is the probability that 4 will submit a claim during the year?  How many do you expect to submit a claim? What is the standard deviation?
1
Expert's answer
2021-11-30T09:45:01-0500

n=15p=0.30q=10.3=0.7n=15 \\ p=0.30 \\ q = 1 - 0.3 = 0.7

X~Binomial(15,0.3)

P(X)=Cx15(0.3)x(0.7)15xP(X) = C^{15}_x(0.3)^x(0.7)^{15-x}

The probability that at least 10 will submit a claim during the year

P(X10)=P(X=10)+P(X=11)+P(X=12)+P(X=13)+P(X=14)+P(X=15)P(X=10)=C1015(0.3)10(0.7)1510=0.002980=298×105P(X=11)=C1115(0.3)11(0.7)1511=0.000580=58×105P(X=12)=C1215(0.3)12(0.7)1512=8.29×105P(X=13)=C1315(0.3)13(0.7)1513=0.82×105P(X=14)=C1415(0.3)14(0.7)1514=0.05×105P(X=15)=C1515(0.3)15(0.7)1515=0.0014×105P(X10)=298×105+58×105+8.29×105+0.82×105+0.05×105+0.0014×105=365.1614×105P(X10)=0.00365P(X≥10) = P(X=10) + P(X=11) +P(X=12) +P(X=13) + P(X=14) + P(X=15) \\ P(X=10) = C^{15}_{10}(0.3)^{10}(0.7)^{15-10} = 0.002980 = 298 \times 10^{-5} \\ P(X=11) = C^{15}_{11}(0.3)^{11}(0.7)^{15-11} = 0.000580 = 58 \times 10^{-5} \\ P(X=12) = C^{15}_{12}(0.3)^{12}(0.7)^{15-12} = 8.29 \times 10^{-5} \\ P(X=13) = C^{15}_{13}(0.3)^{13}(0.7)^{15-13} = 0.82 \times 10^{-5} \\ P(X=14) = C^{15}_{14}(0.3)^{14}(0.7)^{15-14} = 0.05 \times 10^{-5} \\ P(X=15) = C^{15}_{15}(0.3)^{15}(0.7)^{15-15} = 0.0014 \times 10^{-5} \\ P(X≥10) = 298 \times 10^{-5} + 58 \times 10^{-5} + 8.29 \times 10^{-5} + 0.82 \times 10^{-5} + 0.05 \times 10^{-5} + 0.0014 \times 10^{-5} = 365.1614 \times 10^{-5} \\ P(X≥10) = 0.00365

The probability that 4 will submit a claim during the year

P(X=4)=C415(0.3)4(0.7)154=0.2186P(X=4) = C^{15}_{4}(0.3)^{4}(0.7)^{15-4} = 0.2186

Expected =15×0.30=4.55= 15 \times 0.30 = 4.5 ≈ 5

The standard deviation

SD=p(1p)n=0.3(10.3)15=0.1183SD = \sqrt{\frac{p(1-p)}{n}} \\ = \sqrt{\frac{0.3(1-0.3)}{15}} \\ = 0.1183


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS