Question #249251
The following table give the grouped data on the weights of all 100 babies born at Matero level 1
clinic last year.
Weight (Units) Number of
babies
3 to less than 5 5
5 to less than 7 30
7 to less than 9 40
9 to less than 11 20
11 to less than 13 5
(a) Calculate the mean
(b) Calculate the variance and standard deviation
(c) Calculate the mode
(d) Calculate the median
(e) Calculate the coefficient of variation
1
Expert's answer
2021-10-14T06:46:02-0400

SOLUTION

I drew a frequency table to represent the data and ease the calculation


(a) Calculate the mean

Mean(μ)=Σf(x)n=780100=7.8Mean(\mu)=\frac{\Sigma{f(x)}}{n}=\frac{780}{100}=7.8

Answer =7.8=7.8

(b) Calculate the variance and standard deviation

σ2=Σf(x)2(Σf(x))2n\sigma^2=\frac{\Sigma{f(x)^2}-(\Sigma{f(x))^2}}{n}

=6440(780)2100=3.56σ=3.56=1.8868=\frac{6440-(780)^2}{100}=3.56\\ \sigma=\sqrt{3.56}=1.8868

Answer =1.8868=1.8868

(c) Calculate the mode

Maximum frequency is 40. The mode class is 7-9.

L=L= lower boundary point of mode class =7=7

f1=f_1= frequency of the mode class=40=40

f0=f_0= frequency of the preceding class =30=30

f2=f_2= frequency of the succeeding class =20=20

c=c= class length of mode class =2=2

Mode=Z=L+(f1f02f1f0f2)c=7+(40302(40)3020)2=7.6667Mode=Z=L+\Big(\frac{f_1-f_0}{2f_1-f_0-f_2}\Big)*c\\=7+\Big(\frac{40-30}{2(40)-30-20}\Big)*2=7.6667

Answer =7.6667=7.6667

(d) Calculate the median

value of (n/2)th(n/2)th  observation == value of (100/2)th(100/2)th  observation ==

value of (50)th(50)th  observation

From the column of cumulative frequency cf,cf, we find that the (50)th(50)th  observation lies in the class 7-9.

The median class is 7-9.

L=L= lower boundary point of median class =7=7

n=n= Total frequency =100=100

cf=cf= Cumulative frequency of the class preceding the median class =35=35

f=f= Frequency of the median class =40=40

c=c= class length of median class =2=2

median=M=L+(n2cff)cmedian=M=L+(\dfrac{\dfrac{n}{2}-cf}{f})\cdot c

=7+(503540)2=7.75=7+(\dfrac{50-35}{40})\cdot 2=7.75

Answer =7.75=7.75

(e) Calculate the coefficient of variation

coefficient of variation =σxˉ100%=1.88687.8100%24.19%=\dfrac{\sigma}{\bar{x}}\cdot100\%=\dfrac{1.8868}{7.8}\cdot100\%\approx24.19\%

Answer =24.19%=24.19\%


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS