Question #248593

find the regression analysis, what is the value of a,b, and what is expected y if x=18

X: 17 12 10 20

Y: 10 10 8 12


1
Expert's answer
2021-10-11T05:10:14-0400
XYXYX2Y21710170289100121012014410010880100642012240400144Sum=5940610933408\begin{matrix} & X & Y & XY & X^2 & Y^2 \\ & 17 & 10 & 170 & 289 & 100 \\ & 12 & 10 & 120 & 144 & 100 \\ & 10 & 8 & 80 & 100 & 64 \\ & 20 & 12 & 240 & 400 & 144 \\ Sum =& 59 & 40 & 610 & 933 & 408 \\ \end{matrix}

Xˉ=1ni=1nXi=594=14.75\bar{X}=\dfrac{1}{n}\displaystyle\sum_{i=1}^nX_i=\dfrac{59}{4}=14.75

Yˉ=1ni=1nYi=404=10\bar{Y}=\dfrac{1}{n}\displaystyle\sum_{i=1}^nY_i=\dfrac{40}{4}=10

SSXX=i=1nXi21n(i=1nXi)2SS_{XX}=\displaystyle\sum_{i=1}^nX_i^2-\dfrac{1}{n}(\displaystyle\sum_{i=1}^nX_i)^2

=933(59)24=62.75=933-\dfrac{(59)^2}{4}=62.75

SSYY=i=1nYi21n(i=1nYi)2SS_{YY}=\displaystyle\sum_{i=1}^nY_i^2-\dfrac{1}{n}(\displaystyle\sum_{i=1}^nY_i)^2

=408(40)24=8=408-\dfrac{(40)^2}{4}=8

SSXY=i=1nXiYi1n(i=1nXi)(i=1nYi)SS_{XY}=\displaystyle\sum_{i=1}^nX_iY_i-\dfrac{1}{n}(\displaystyle\sum_{i=1}^nX_i)(\displaystyle\sum_{i=1}^nY_i)

=61059(40)4=20=610-\dfrac{59(40)}{4}=20

The regression coefficients (the slope m,m, and the y-intercept  nn) are obtained as follows:


m=SSXYSSXX=2062.75=0.318725m=\dfrac{SS_{XY}}{SS_{XX}}=\dfrac{20}{62.75}=0.318725

n=YˉmXˉ=102062.75(14.75)=5.298805n=\bar{Y}-m\bar{X}=10-\dfrac{20}{62.75}(14.75)=5.298805

We find that the regression equation is:


Y=5.298805+0.318725XY=5.298805+0.318725X



Correlation coefficient


r=SSXYSSXXSSYY=2062.758=0.892644r=\dfrac{SS_{XY}}{\sqrt{SS_{XX}}\sqrt{SS_{YY}}}=\dfrac{20}{\sqrt{62.75}\sqrt{8}}=0.892644

Strong positive correlation.


r2=(20)262.75(8)=0.796813r^2=\dfrac{(20)^2}{62.75(8)}=0.796813

Y(18)=5.298805+0.318725(18)=11.035855Y(18)=5.298805+0.318725(18)=11.035855



Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS