find the regression analysis, what is the value of a,b, and what is expected y if x=18
X: 17 12 10 20
Y: 10 10 8 12
"\\bar{X}=\\dfrac{1}{n}\\displaystyle\\sum_{i=1}^nX_i=\\dfrac{59}{4}=14.75"
"\\bar{Y}=\\dfrac{1}{n}\\displaystyle\\sum_{i=1}^nY_i=\\dfrac{40}{4}=10"
"SS_{XX}=\\displaystyle\\sum_{i=1}^nX_i^2-\\dfrac{1}{n}(\\displaystyle\\sum_{i=1}^nX_i)^2"
"=933-\\dfrac{(59)^2}{4}=62.75"
"SS_{YY}=\\displaystyle\\sum_{i=1}^nY_i^2-\\dfrac{1}{n}(\\displaystyle\\sum_{i=1}^nY_i)^2"
"=408-\\dfrac{(40)^2}{4}=8"
"SS_{XY}=\\displaystyle\\sum_{i=1}^nX_iY_i-\\dfrac{1}{n}(\\displaystyle\\sum_{i=1}^nX_i)(\\displaystyle\\sum_{i=1}^nY_i)"
"=610-\\dfrac{59(40)}{4}=20"
The regression coefficients (the slope "m," and the y-intercept "n") are obtained as follows:
"n=\\bar{Y}-m\\bar{X}=10-\\dfrac{20}{62.75}(14.75)=5.298805"
We find that the regression equation is:
Correlation coefficient
Strong positive correlation.
"Y(18)=5.298805+0.318725(18)=11.035855"
Comments
Leave a comment