X Y X Y X 2 Y 2 17 10 170 289 100 12 10 120 144 100 10 8 80 100 64 20 12 240 400 144 S u m = 59 40 610 933 408 \begin{matrix}
& X & Y & XY & X^2 & Y^2 \\
& 17 & 10 & 170 & 289 & 100 \\
& 12 & 10 & 120 & 144 & 100 \\
& 10 & 8 & 80 & 100 & 64 \\
& 20 & 12 & 240 & 400 & 144 \\
Sum =& 59 & 40 & 610 & 933 & 408 \\
\end{matrix} S u m = X 17 12 10 20 59 Y 10 10 8 12 40 X Y 170 120 80 240 610 X 2 289 144 100 400 933 Y 2 100 100 64 144 408
X ˉ = 1 n ∑ i = 1 n X i = 59 4 = 14.75 \bar{X}=\dfrac{1}{n}\displaystyle\sum_{i=1}^nX_i=\dfrac{59}{4}=14.75 X ˉ = n 1 i = 1 ∑ n X i = 4 59 = 14.75
Y ˉ = 1 n ∑ i = 1 n Y i = 40 4 = 10 \bar{Y}=\dfrac{1}{n}\displaystyle\sum_{i=1}^nY_i=\dfrac{40}{4}=10 Y ˉ = n 1 i = 1 ∑ n Y i = 4 40 = 10
S S X X = ∑ i = 1 n X i 2 − 1 n ( ∑ i = 1 n X i ) 2 SS_{XX}=\displaystyle\sum_{i=1}^nX_i^2-\dfrac{1}{n}(\displaystyle\sum_{i=1}^nX_i)^2 S S XX = i = 1 ∑ n X i 2 − n 1 ( i = 1 ∑ n X i ) 2
= 933 − ( 59 ) 2 4 = 62.75 =933-\dfrac{(59)^2}{4}=62.75 = 933 − 4 ( 59 ) 2 = 62.75
S S Y Y = ∑ i = 1 n Y i 2 − 1 n ( ∑ i = 1 n Y i ) 2 SS_{YY}=\displaystyle\sum_{i=1}^nY_i^2-\dfrac{1}{n}(\displaystyle\sum_{i=1}^nY_i)^2 S S YY = i = 1 ∑ n Y i 2 − n 1 ( i = 1 ∑ n Y i ) 2
= 408 − ( 40 ) 2 4 = 8 =408-\dfrac{(40)^2}{4}=8 = 408 − 4 ( 40 ) 2 = 8
S S X Y = ∑ i = 1 n X i Y i − 1 n ( ∑ i = 1 n X i ) ( ∑ i = 1 n Y i ) SS_{XY}=\displaystyle\sum_{i=1}^nX_iY_i-\dfrac{1}{n}(\displaystyle\sum_{i=1}^nX_i)(\displaystyle\sum_{i=1}^nY_i) S S X Y = i = 1 ∑ n X i Y i − n 1 ( i = 1 ∑ n X i ) ( i = 1 ∑ n Y i )
= 610 − 59 ( 40 ) 4 = 20 =610-\dfrac{59(40)}{4}=20 = 610 − 4 59 ( 40 ) = 20 The regression coefficients (the slope m , m, m , and the y-intercept n n n ) are obtained as follows:
m = S S X Y S S X X = 20 62.75 = 0.318725 m=\dfrac{SS_{XY}}{SS_{XX}}=\dfrac{20}{62.75}=0.318725 m = S S XX S S X Y = 62.75 20 = 0.318725
n = Y ˉ − m X ˉ = 10 − 20 62.75 ( 14.75 ) = 5.298805 n=\bar{Y}-m\bar{X}=10-\dfrac{20}{62.75}(14.75)=5.298805 n = Y ˉ − m X ˉ = 10 − 62.75 20 ( 14.75 ) = 5.298805 We find that the regression equation is:
Y = 5.298805 + 0.318725 X Y=5.298805+0.318725X Y = 5.298805 + 0.318725 X
Correlation coefficient
r = S S X Y S S X X S S Y Y = 20 62.75 8 = 0.892644 r=\dfrac{SS_{XY}}{\sqrt{SS_{XX}}\sqrt{SS_{YY}}}=\dfrac{20}{\sqrt{62.75}\sqrt{8}}=0.892644 r = S S XX S S YY S S X Y = 62.75 8 20 = 0.892644 Strong positive correlation.
r 2 = ( 20 ) 2 62.75 ( 8 ) = 0.796813 r^2=\dfrac{(20)^2}{62.75(8)}=0.796813 r 2 = 62.75 ( 8 ) ( 20 ) 2 = 0.796813
Y ( 18 ) = 5.298805 + 0.318725 ( 18 ) = 11.035855 Y(18)=5.298805+0.318725(18)=11.035855 Y ( 18 ) = 5.298805 + 0.318725 ( 18 ) = 11.035855
Comments