"p=0.35 \\\\\nn=40 \\\\\nq=p-1 = 0.65 \\\\\nP(X=x) = C^n_x p^x q^{n-x} \\\\\na) \\; P(X\u226415) = \\sum^{15}_{x=0} C^{40}_x (0.35)^x (0.65)^{40-x} \\\\\nP(X\u226415) = 0.6946 \\\\\nb) \\; P(12<X<18) = \\sum^{17}_{13} C^{40}_x (0.35)^x (0.65)^{40-x} \\\\\n= \\sum^{17}_{x=0} C^{40}_x (0.35)^x (0.65)^{40-x} - \\sum^{12}_{x=0} C^{40}_x (0.35)^x (0.65)^{40-x} \\\\ \n= 0.8761-0.3143 \\\\\n= 0.5618 \\\\\nc) \\; Mean = np = 40 \\times 0.35 = 14 \\\\\nP(X=14) = C^{40}_{14} (0.35)^{14} (0.65)^{26} \\\\\nP(X=14) = 0.1313"
Comments
Leave a comment