Let X be a Bernoulli random variable (Hint: Special case of Binomial
Distribution)
a. Compute E(X2)
b. Show that V(X) is p(1 − p).
c. Compute E(X79)
If X is A Bernoulli random variable, then its p. d. f is given by
"P(X=x)=p^{x}(1-p)^{1-x}, x=0, 1"
First, determine P(X=x) when x=0 and x=1.
So,
P(X=0)=p0(1-p)1-0=1*(1-p)=1-p
P(X=1)=p1(1-p)1-1=p*1=p
a.
E(X2)="\\displaystyle\\sum_{x=0}^{1}(\\def\\foo{x^2}\\foo)*P(X=x)"
=02*P(X=0)+12*P(X=1)
=0*(1-p)+1*(p)=p
Therefore, E(x2)=p
b. Variance of random variable X is defined by,
V(X)=E(X2)-(E(X))2
We need to determine E(X) which is given as,
E(X)="\\displaystyle\\sum_{x=0}^{1}(x)*P(X=x)"
=0*P(X=0)+1*P(X=1)
=0*(1-p)+1*(p)=p
Therefore, V(X)=p-p2
Factoring gives p(1-p)
Hence V(X)=p(1-p) as given.
c.
E(X79) ="\\displaystyle\\sum_{x=0}^{1}(x^{79})*P(X=x)"
=(079)*P(X=0)+(179)*P(X=1)
=0*(1-p)+1*p
=p
Comments
Leave a comment