Solution:
We are given with cumulative distribution function:
F ( x ) − { 0 x < 1 0.3 1 ≤ x < 3 0.4 3 ≤ x < 4 0.45 4 ≤ x < 6 0.60 6 ≤ x < 12 1 12 ≤ x F(x)-\left\{\begin{array}{cc}0 & x<1 \\ 0.3 & 1 \leq x<3 \\ 0.4 & 3 \leq x<4 \\ 0.45 & 4 \leq x<6 \\ 0.60 & 6 \leq x<12 \\ 1 & 12 \leq x\end{array}\right. F ( x ) − ⎩ ⎨ ⎧ 0 0.3 0.4 0.45 0.60 1 x < 1 1 ≤ x < 3 3 ≤ x < 4 4 ≤ x < 6 6 ≤ x < 12 12 ≤ x
(a)
At every step, by subtracting subsequent cumulative distribution function, we can find probability distribution function.
p ( 0 ) = 0 p ( 1 ) = F ( 1 ) − F ( 0 ) = 0.3 − 0 = 0.3 p ( 2 ) = 0 p ( 3 ) = F ( 3 ) − F ( 2 ) = 0.4 − 0.3 = 0.1 p ( 4 ) = F ( 4 ) − F ( 3 ) = 0.45 − 0.40 = 0.05 p ( 5 ) = 0 p ( 6 ) = F ( 6 ) − F ( 5 ) = 0.60 − 0.45 = 0.15 p ( 6 ) = 0 p ( 7 ) = 0 p ( 8 ) = 0 p ( 9 ) = 0 p ( 10 ) = 0 p ( 11 ) = 0 p ( 12 ) = F ( 12 ) − F ( 11 ) = 1 − 0.60 = 0.40 p(0)=0
\\p(1)=F(1)-F(0)=0.3-0=0.3
\\p(2)=0
\\p(3)=F(3)-F(2)=0.4-0.3=0.1
\\p(4)=F(4)-F(3)=0.45-0.40=0.05
\\p(5)=0
\\p(6)=F(6)-F(5)=0.60-0.45=0.15
\\p(6)=0
\\p(7)=0
\\p(8)=0
\\p(9)=0
\\p(10)=0
\\p(11)=0
\\p(12)=F(12)-F(11)=1-0.60=0.40 p ( 0 ) = 0 p ( 1 ) = F ( 1 ) − F ( 0 ) = 0.3 − 0 = 0.3 p ( 2 ) = 0 p ( 3 ) = F ( 3 ) − F ( 2 ) = 0.4 − 0.3 = 0.1 p ( 4 ) = F ( 4 ) − F ( 3 ) = 0.45 − 0.40 = 0.05 p ( 5 ) = 0 p ( 6 ) = F ( 6 ) − F ( 5 ) = 0.60 − 0.45 = 0.15 p ( 6 ) = 0 p ( 7 ) = 0 p ( 8 ) = 0 p ( 9 ) = 0 p ( 10 ) = 0 p ( 11 ) = 0 p ( 12 ) = F ( 12 ) − F ( 11 ) = 1 − 0.60 = 0.40
(b)
We have to find probability between x=3 and x= inclusive. This is given by:
p ( 3 ≤ x ≤ 6 ) = F ( 6 ) − F ( 2 ) = 0.60 − 0.30 = 0.30 \begin{aligned}
&p(3 \leq x \leq 6)=F(6)-F(2) \\
&=0.60-0.30 \\
&=0.30
\end{aligned} p ( 3 ≤ x ≤ 6 ) = F ( 6 ) − F ( 2 ) = 0.60 − 0.30 = 0.30
Therefore, p ( 3 ≤ x ≤ 6 ) = 0.30 p(3 \leq x \leq 6)=0.30 p ( 3 ≤ x ≤ 6 ) = 0.30
Also, we have to find probability for x x x greater than or equal to 4 . This is given by:
p ( 4 ≤ x ) = F ( 12 ) − F ( 3 ) = 1 − 0.40 = 0.60 \begin{aligned}
&p(4 \leq x)=F(12)-F(3) \\
&=1-0.40 \\
&=0.60
\end{aligned} p ( 4 ≤ x ) = F ( 12 ) − F ( 3 ) = 1 − 0.40 = 0.60
Therefore,
p ( 4 ≤ x ) = 0.60 p(4 \leq x)=0.60 p ( 4 ≤ x ) = 0.60
Comments