Let [x] be the greatest integer not exceeding x.
The probability density function in Example 2.2.1 is given as follows:
f(x)=1222x−1
for x=1,2,…,12
The cumulative distribution function (CDF) of a random variable X is defined for any real x is,
F(x) =P(X≤x)
Calculate the cumulative distribution function by using the following table:
X=1F(1)=(12)2(2×1)−1=(12)21=(12[1])2X=2F(2)=(12)2(2×1)−1+(12)2(2×2)−1=(12)21+(12)23=(12[2])2X=3F(3)=(12)2(2×1)−1+(12)2(2×2)−1+(12)2(2×3)−1=(12)21+(12)23+(12)25=(12[3])2
Similarly, for the remaining terms, the cumulative distribution function is obtained as,
X=4F(4)=(12[4])2X=5F(5)=(12[5])2X=6F(6)=(12[6])2…X=12F(12)=(12[12])2
By the above equations, the cumulative distribution function is represented as,
F(x)=(12[x])2
Therefore, the cumulative distribution function is,
F(x)=⎩⎨⎧0;x⩽0([x]/12)2;0<x<131;x⩾13
Comments