p=0.9
n=20
The binomial distribution
"P(X=x) = \\binom{n}{x}(p)^x(1-p)^{n-x}"
(a) exactly 18 will have a useful life of at least 800 hours
"P(X=18) = \\binom{20}{18}(0.9)^{18}(1-0.9)^{20-18} \\\\\n\n= \\frac{20!}{18!(20-18)!} \\times (0.9)^{18} \\times (0.1)^2 \\\\\n\n= 0.285179"
(b) exactly 15 will have a useful life of at least 800 hours
"P(X=15) = \\binom{20}{15}(0.9)^{15}(1-0.9)^{20-15} \\\\\n\n= \\frac{20!}{15!(20-15)!} \\times (0.9)^{15} \\times (0.1)^5 \\\\\n\n= 0.031921"
(c) at least 2 will not have a useful life of at least 800 hours
"p=1-0.9=0.1 \\\\\n\nP(X\u22652) = 1 -P(X<2) \\\\\n\n= 1-[P(X=0)+P(X=1)] \\\\\n\n= 1 -[\\binom{20}{0}(0.1)^0(0.9)^{20-0} + \\binom{20}{1} (0.1)^1 (0.9)^{20-1}] \\\\\n\n= 1-[0.121576 + 0.270170] \\\\\n\n= 1 -0.391746 \\\\\n\n= 0.608254"
Comments
Leave a comment