Definition of complement
"P(B^C|A^C)=1 -P(B|A^C)"
Bayes' rule
"P(B^C|A^C) = 1 -(\\frac{P(A^C|B)P(B)}{P(A^C)})"
Definition of complement
"P(B^C|A^C) = 1 -(\\frac{(1 -P(A|B))P(B)}{P(A^C)})"
Using "P(A|B) = 1"
"P(B^C|A^C) = 1 -(\\frac{(0)P(A)}{P(B^C)}) \\\\\n\nP(B^C|A^C) = 1"
Comments
Leave a comment