Definition of complement
P(BC∣AC)=1−P(B∣AC)P(B^C|A^C)=1 -P(B|A^C)P(BC∣AC)=1−P(B∣AC)
Bayes' rule
P(BC∣AC)=1−(P(AC∣B)P(B)P(AC))P(B^C|A^C) = 1 -(\frac{P(A^C|B)P(B)}{P(A^C)})P(BC∣AC)=1−(P(AC)P(AC∣B)P(B))
P(BC∣AC)=1−((1−P(A∣B))P(B)P(AC))P(B^C|A^C) = 1 -(\frac{(1 -P(A|B))P(B)}{P(A^C)})P(BC∣AC)=1−(P(AC)(1−P(A∣B))P(B))
Using P(A∣B)=1P(A|B) = 1P(A∣B)=1
P(BC∣AC)=1−((0)P(A)P(BC))P(BC∣AC)=1P(B^C|A^C) = 1 -(\frac{(0)P(A)}{P(B^C)}) \\ P(B^C|A^C) = 1P(BC∣AC)=1−(P(BC)(0)P(A))P(BC∣AC)=1
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments