Given the normally distributed variable X with mean 18 and standard deviation 2.5, find: (a) P(X < 15); (b) P(17 < X <21); (c) the value of k such that P(X<k) = 0.2578; (d) the value of k such that P (X > k) = 0.1539
By condition "a = 18,\\,\\sigma = 2.5" .
(a) "P(X < 15) = P( - \\infty < X < 15) = \\Phi \\left( {\\frac{{15 - a}}{\\sigma }} \\right) - \\Phi ( - \\infty ) = \\Phi \\left( {\\frac{{15 - 18}}{{2.5}}} \\right) + 0.5 = 0.5 - \\Phi \\left( {1.2} \\right) = 0.5 - 0.3489 = {\\rm{0}}{\\rm{.1511}}"
Answer: "P(X < 15) = {\\rm{0}}{\\rm{.1511}}"
(b)
"P(17 < X < 21) = \\Phi \\left( {\\frac{{\\beta - a}}{\\sigma }} \\right) - \\Phi \\left( {\\frac{{\\alpha - a}}{\\sigma }} \\right) = \\Phi \\left( {\\frac{{21 - 18}}{{2.5}}} \\right) - \\Phi \\left( {\\frac{{17 - 18}}{{2.5}}} \\right) = \\Phi \\left( {1.2} \\right) + \\Phi (0.4) = 0.3489 + 0.1554 = {\\rm{0}}{\\rm{.5043}}"
Answer: "P(17 < X < 21) = 0.5043"
(c)
"P(X < k) = 0.2578 \\Rightarrow P( - \\infty < X < k) = 0.2578 \\Rightarrow \\Phi \\left( {\\frac{{k - 18}}{{2.5}}} \\right) - \\Phi ( - \\infty ) = 0.2578 \\Rightarrow \\Phi \\left( {\\frac{{k - 18}}{{2.5}}} \\right) + 0.5 = 0.2578 \\Rightarrow \\Phi \\left( {\\frac{{k - 18}}{{2.5}}} \\right) = {\\rm{ - 0}}{\\rm{.2422}} \\Rightarrow \\frac{{k - 18}}{{2.5}} = - 0.65 \\Rightarrow k - 18 = 1.625 \\Rightarrow k = 19.625"
Answer: "k = 19.625"
(d)
"P(X > k) = 0.1539 \\Rightarrow P(k < x < \\infty ) = 0.1539 \\Rightarrow \\Phi \\left( \\infty \\right) - \\Phi \\left( {\\frac{{k - 18}}{{2.5}}} \\right) = 0.1539 \\Rightarrow 0.5 - \\Phi \\left( {\\frac{{k - 18}}{{2.5}}} \\right) = 0.1539 \\Rightarrow \\Phi \\left( {\\frac{{k - 18}}{{2.5}}} \\right) = {\\rm{0}}{\\rm{.3461}} \\Rightarrow \\frac{{k - 18}}{{2.5}} = 1.02 \\Rightarrow k - 18 = 2.55 \\Rightarrow k = 20.55"
Answer: "k = 20.55"
Comments
Leave a comment