Question #238925

Given the normally distributed variable X with mean 18 and standard deviation 2.5, find: (a) P(X < 15); (b) P(17 < X <21); (c) the value of k such that P(X<k) = 0.2578; (d) the value of k such that P (X > k) = 0.1539


1
Expert's answer
2021-09-21T09:08:01-0400

By condition a=18,σ=2.5a = 18,\,\sigma = 2.5 .

(a) P(X<15)=P(<X<15)=Φ(15aσ)Φ()=Φ(15182.5)+0.5=0.5Φ(1.2)=0.50.3489=0.1511P(X < 15) = P( - \infty < X < 15) = \Phi \left( {\frac{{15 - a}}{\sigma }} \right) - \Phi ( - \infty ) = \Phi \left( {\frac{{15 - 18}}{{2.5}}} \right) + 0.5 = 0.5 - \Phi \left( {1.2} \right) = 0.5 - 0.3489 = {\rm{0}}{\rm{.1511}}

Answer: P(X<15)=0.1511P(X < 15) = {\rm{0}}{\rm{.1511}}

(b)

P(17<X<21)=Φ(βaσ)Φ(αaσ)=Φ(21182.5)Φ(17182.5)=Φ(1.2)+Φ(0.4)=0.3489+0.1554=0.5043P(17 < X < 21) = \Phi \left( {\frac{{\beta - a}}{\sigma }} \right) - \Phi \left( {\frac{{\alpha - a}}{\sigma }} \right) = \Phi \left( {\frac{{21 - 18}}{{2.5}}} \right) - \Phi \left( {\frac{{17 - 18}}{{2.5}}} \right) = \Phi \left( {1.2} \right) + \Phi (0.4) = 0.3489 + 0.1554 = {\rm{0}}{\rm{.5043}}

Answer: P(17<X<21)=0.5043P(17 < X < 21) = 0.5043

(c)

P(X<k)=0.2578P(<X<k)=0.2578Φ(k182.5)Φ()=0.2578Φ(k182.5)+0.5=0.2578Φ(k182.5)=0.2422k182.5=0.65k18=1.625k=19.625P(X < k) = 0.2578 \Rightarrow P( - \infty < X < k) = 0.2578 \Rightarrow \Phi \left( {\frac{{k - 18}}{{2.5}}} \right) - \Phi ( - \infty ) = 0.2578 \Rightarrow \Phi \left( {\frac{{k - 18}}{{2.5}}} \right) + 0.5 = 0.2578 \Rightarrow \Phi \left( {\frac{{k - 18}}{{2.5}}} \right) = {\rm{ - 0}}{\rm{.2422}} \Rightarrow \frac{{k - 18}}{{2.5}} = - 0.65 \Rightarrow k - 18 = 1.625 \Rightarrow k = 19.625

Answer: k=19.625k = 19.625

(d)

P(X>k)=0.1539P(k<x<)=0.1539Φ()Φ(k182.5)=0.15390.5Φ(k182.5)=0.1539Φ(k182.5)=0.3461k182.5=1.02k18=2.55k=20.55P(X > k) = 0.1539 \Rightarrow P(k < x < \infty ) = 0.1539 \Rightarrow \Phi \left( \infty \right) - \Phi \left( {\frac{{k - 18}}{{2.5}}} \right) = 0.1539 \Rightarrow 0.5 - \Phi \left( {\frac{{k - 18}}{{2.5}}} \right) = 0.1539 \Rightarrow \Phi \left( {\frac{{k - 18}}{{2.5}}} \right) = {\rm{0}}{\rm{.3461}} \Rightarrow \frac{{k - 18}}{{2.5}} = 1.02 \Rightarrow k - 18 = 2.55 \Rightarrow k = 20.55

Answer: k=20.55k = 20.55



Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS