Full problem:
Given the normally distributed variable X with mean 18 and standard deviation 2.5, find
(a) P(X<15):
(h) P(17< X<21);
(c) the value of k such that P(X<k) = 0.2578;
(d) the value of k such that P(X> A) = 0.1539.
μ=18σ=2.5
(a)
P(X<15)=P(Z<2.515−18)=P(Z<−1.2)=0.1150
(b)
P(17<X<21)=P(X<21)−P(X<17)=P(Z<2.521−18)−P(Z<2.517−18)=P(Z<0.8571)−P(Z<−0.4)=0.8042−0.3445=0.4597
(c)
P(X<k)=0.2578P(Z<2.5k−18)=0.25782.5k−18=−0.65k−18=2.5×(−0.65)k=18−1.625k=16.375
(d)
P(X>k)=0.1539P(X<k)=1−0.1539=0.8461P(Z<2.5k−18)=0.84612.5k−18=1.02k−18=2.5×1.02k=18+2.55k=20.55
Comments