Question #238924

the value of k such that P(X<k) = 0.2578


1
Expert's answer
2021-09-23T00:16:52-0400

Full problem:


Given the normally distributed variable X with mean 18 and standard deviation 2.5, find

(a) P(X<15):

(h) P(17< X<21);

(c) the value of k such that P(X<k) = 0.2578;

(d) the value of k such that P(X> A) = 0.1539.


μ=18σ=2.5\mu=18 \\ \sigma=2.5

(a)

P(X<15)=P(Z<15182.5)=P(Z<1.2)=0.1150P(X<15) = P(Z< \frac{15-18}{2.5}) \\ =P(Z< -1.2) \\ = 0.1150

(b)

P(17<X<21)=P(X<21)P(X<17)=P(Z<21182.5)P(Z<17182.5)=P(Z<0.8571)P(Z<0.4)=0.80420.3445=0.4597P(17<X<21) = P(X<21) -P(X<17) \\ =P(Z< \frac{21-18}{2.5}) -P(Z< \frac{17-18}{2.5}) \\ =P(Z< 0.8571) -P(Z< -0.4) \\ = 0.8042 -0.3445 \\ = 0.4597

(c)

P(X<k)=0.2578P(Z<k182.5)=0.2578k182.5=0.65k18=2.5×(0.65)k=181.625k=16.375P(X<k) = 0.2578 \\ P(Z< \frac{k-18}{2.5}) =0.2578 \\ \frac{k-18}{2.5} = -0.65 \\ k-18 = 2.5 \times (-0.65) \\ k=18 -1.625 \\ k=16.375

(d)

P(X>k)=0.1539P(X<k)=10.1539=0.8461P(Z<k182.5)=0.8461k182.5=1.02k18=2.5×1.02k=18+2.55k=20.55P(X>k) = 0.1539 \\ P(X<k) = 1 -0.1539 = 0.8461 \\ P(Z< \frac{k-18}{2.5}) =0.8461 \\ \frac{k-18}{2.5} = 1.02 \\ k-18=2.5 \times 1.02 \\ k = 18 +2.55 \\ k=20.55


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS