In testing whether the means of two normal populations are equal, summary statistics computed for two independent samples are as follows:
Brand X Brand Y
๐1 = 25 ๐2 = 25
x=7.3 x=6.8
S1=1.05 S2=1.20
Assume that the population variances are equal. Then the 95% confidence interval for the difference between population means of band ๐ and brand ๐ is:
1. (-0.1407; 1.1407)
2. (0.5; 0.0906)
3. (0.490; 0.9506)
4. (0.3976; 0.5609)
5. (0.5906; 0.4094)
Solution:
"\ud835\udc5b_1 = 25, \ud835\udc5b_2 = 25\n\\\\\\bar x_1=7.3, \\bar x_2=6.8\n\\\\S_1=1.05, S_2=1.20"
"H_0:\\mu_1= \\mu_2\n\\\\ H_1:\\mu_1\\ne \\mu_2"
ฮฑ = 0.05ย ย ย ย ย ย
Degrees of freedom = 25 + 25 - 2 = 48
Lower Critical t- score = -2.011ย ย ย ย ย
Upper Critical t- score = 2.011
Now, we reject "H_0" if "|t|>2.011"
Pooled variance, "S_p=\\sqrt{\\dfrac{(n_1-1)S_1^2+(n_2-1)S_2^2}{n_1+n_2-2}}"
"S_p=\\sqrt{\\dfrac{(24)(1.05)^2+(24)(1.2)^2}{48}}=1.127"
Then, SE"=S_p\\sqrt{\\dfrac{1}{n_1}+\\dfrac{1}{n_2}}=1.127\\sqrt{\\dfrac{2}{25}}=0.318"
Now, 95% CI"=(\\bar x_1-\\bar x_2)\\pm t_{0.05,48}\\ SE"
"=(7.3-6.8)\\pm2.011(0.318)\n\\\\=(-0.139,1.139)\n\\\\\\approx(-0.14, 1.14)"
Thus, option 1 is correct.
Comments
Leave a comment