Question #235587
The joint probability distribution function of two random variable x&y given by f(x, y )=9(1+x+y)/2(1+x)^4(1+y)^4,0<x<∞,0<y ∞ find the marginal distribution
1
Expert's answer
2021-09-12T18:17:22-0400
f(x,y)=9(1+x+y)2(1+x)4(1+y)4f(x, y)=\dfrac{9(1+x+y)}{2(1+x)^4(1+y)^4}

fX(x)=fXY(x,y)dyf_X(x)=\displaystyle\int_{-\infin}^{\infin}f_{XY}(x,y)dy

=09(1+x+y)2(1+x)4(1+y)4dy=\displaystyle\int_{0}^{\infin}\dfrac{9(1+x+y)}{2(1+x)^4(1+y)^4}dy

=092(1+x)4(1+y)3dy=\displaystyle\int_{0}^{\infin}\dfrac{9}{2(1+x)^4(1+y)^3}dy




+09x2(1+x)4(1+y)4dy+\displaystyle\int_{0}^{\infin}\dfrac{9x}{2(1+x)^4(1+y)^4}dy

=limt0t92(1+x)4(1+y)3dy=\lim\limits_{t\to \infin}\displaystyle\int_{0}^{t}\dfrac{9}{2(1+x)^4(1+y)^3}dy

+limt0t9x2(1+x)4(1+y)4dy+\lim\limits_{t\to \infin}\displaystyle\int_{0}^{t}\dfrac{9x}{2(1+x)^4(1+y)^4}dy

=92(1+x)4limt[12(1+y)2x3(1+y)3]t0=\dfrac{9}{2(1+x)^4}\lim\limits_{t\to \infin}\big[-\dfrac{1}{2(1+y)^2}-\dfrac{x}{3(1+y)^3}\big]\begin{matrix} t\\ 0 \end{matrix}

=92(1+x)4(12+x3)=3(3+2x)4(1+x)4=\dfrac{9}{2(1+x)^4}(\dfrac{1}{2}+\dfrac{x}{3})=\dfrac{3(3+2x)}{4(1+x)^4}


fY(y)=fXY(x,y)dxf_Y(y)=\displaystyle\int_{-\infin}^{\infin}f_{XY}(x,y)dx

=09(1+x+y)2(1+x)4(1+y)4dx=\displaystyle\int_{0}^{\infin}\dfrac{9(1+x+y)}{2(1+x)^4(1+y)^4}dx

=092(1+x)3(1+y)4dx=\displaystyle\int_{0}^{\infin}\dfrac{9}{2(1+x)^3(1+y)^4}dx




+09x2(1+x)4(1+y)4dx+\displaystyle\int_{0}^{\infin}\dfrac{9x}{2(1+x)^4(1+y)^4}dx

=limt0t92(1+x)3(1+y)4dx=\lim\limits_{t\to \infin}\displaystyle\int_{0}^{t}\dfrac{9}{2(1+x)^3(1+y)^4}dx

+limt0t9y2(1+x)4(1+y)4dx+\lim\limits_{t\to \infin}\displaystyle\int_{0}^{t}\dfrac{9y}{2(1+x)^4(1+y)^4}dx

=92(1+y)4limt[12(1+x)2y3(1+x)3]t0=\dfrac{9}{2(1+y)^4}\lim\limits_{t\to \infin}\big[-\dfrac{1}{2(1+x)^2}-\dfrac{y}{3(1+x)^3}\big]\begin{matrix} t\\ 0 \end{matrix}

=92(1+y)4(12+y3)=3(3+2y)4(1+y)4=\dfrac{9}{2(1+y)^4}(\dfrac{1}{2}+\dfrac{y}{3})=\dfrac{3(3+2y)}{4(1+y)^4}




fX(x)=3(3+2x)4(1+x)4f_X(x)=\dfrac{3(3+2x)}{4(1+x)^4}

fY(y)=3(3+2y)4(1+y)4f_Y(y)=\dfrac{3(3+2y)}{4(1+y)^4}


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS