"f_X(x)=\\displaystyle\\int_{-\\infin}^{\\infin}f_{XY}(x,y)dy"
"=\\displaystyle\\int_{0}^{\\infin}\\dfrac{9(1+x+y)}{2(1+x)^4(1+y)^4}dy"
"=\\displaystyle\\int_{0}^{\\infin}\\dfrac{9}{2(1+x)^4(1+y)^3}dy"
"=\\lim\\limits_{t\\to \\infin}\\displaystyle\\int_{0}^{t}\\dfrac{9}{2(1+x)^4(1+y)^3}dy"
"+\\lim\\limits_{t\\to \\infin}\\displaystyle\\int_{0}^{t}\\dfrac{9x}{2(1+x)^4(1+y)^4}dy"
"=\\dfrac{9}{2(1+x)^4}\\lim\\limits_{t\\to \\infin}\\big[-\\dfrac{1}{2(1+y)^2}-\\dfrac{x}{3(1+y)^3}\\big]\\begin{matrix}\n t\\\\\n 0\n\\end{matrix}"
"=\\dfrac{9}{2(1+x)^4}(\\dfrac{1}{2}+\\dfrac{x}{3})=\\dfrac{3(3+2x)}{4(1+x)^4}"
"=\\displaystyle\\int_{0}^{\\infin}\\dfrac{9(1+x+y)}{2(1+x)^4(1+y)^4}dx"
"=\\displaystyle\\int_{0}^{\\infin}\\dfrac{9}{2(1+x)^3(1+y)^4}dx"
"=\\lim\\limits_{t\\to \\infin}\\displaystyle\\int_{0}^{t}\\dfrac{9}{2(1+x)^3(1+y)^4}dx"
"+\\lim\\limits_{t\\to \\infin}\\displaystyle\\int_{0}^{t}\\dfrac{9y}{2(1+x)^4(1+y)^4}dx"
"=\\dfrac{9}{2(1+y)^4}\\lim\\limits_{t\\to \\infin}\\big[-\\dfrac{1}{2(1+x)^2}-\\dfrac{y}{3(1+x)^3}\\big]\\begin{matrix}\n t\\\\\n 0\n\\end{matrix}"
"=\\dfrac{9}{2(1+y)^4}(\\dfrac{1}{2}+\\dfrac{y}{3})=\\dfrac{3(3+2y)}{4(1+y)^4}"
"f_Y(y)=\\dfrac{3(3+2y)}{4(1+y)^4}"
Comments
Leave a comment