i) P( more than 1 hour late or airline A)
"= \\frac{( number \\space of \\space flights \\space of \\space airline \\space A + number \\space of \\space flights \\space of \\space airline \\space B which \\space are \\space more \\space than \\space 1 hour \\space late ) }{1700}\\\\\n=\\frac{( 429 + 390 + 92 + 80) }{1700} = 0.5829"
Therefore 0.5829 is the required probability here.
ii) P ( airline B or less than 30 min late )
"= \\frac{( number \\space of \\space flights \\space of \\space airline \\space B + number \\space of \\space flights \\space of \\space airline \\space A which \\space are \\space more \\space than \\space 30 minutes \\space late ) }{1700}\\\\\n=\\frac{( 393 + 316 + 80 + 429) }{ 1700} = 0.7165"
Therefore 0.7165 is the required probability here.
iii) P( airline A or Airline B) = 1 since only 2 airlines are there.
iv)
A flight on airline and given it is 30 minutes to 1 hour late
"\\frac{309}{1682}=0.2318"
Comments
Leave a comment