A15001540128013451300B13451560123014531234C15001400123014501235D14501500145014601510
Means in groups
μ1=51500+1540+1280+1345+1300=1393
μ2=51345+1560+1230+1453+1234=1364.4
μ3=51500+1400+1230+1450+1235=1363
μ4=51450+1500+1450+1460+1510=1474
we see that D is a best battery.
But this observation must be confirmed by a statistical test.
null hypothesis
H0:μ1=μ2=μ3=μ4
For we calculate:
1) General average
μ=4μ1+μ2+μ3+μ4=41393+1364.4+1363+1474=1398.6
2) Total sum of squared deviations
SS=∑j=1..4∑i=1..5(Ai,j−μ)2=(1500−1398.6)2+(1540−1398.6)2+(1280−1398.6)2+(1345−1398.6)2+(1300−1398.6)2+(1345−1398.6)2+(1560−1398.6)2+(1230−1398.6)2+(1453−1398.6)2+(1234−1398.6)2+(1500−1398.6)2+(1400−1398.6)2+(1230−1398.6)2+(1450−1398.6)2+(1235−1398.6)2+(1450−1398.6)2+(1500−1398.6)2+(1450−1398.6)2+(1460−1398.6)2+(1510−1398.6)2==244200.8
3) Sums of squared deviations in groups
SSing=∑j=1..4∑i=1..5(Ai,j−μj)2=(1500−1393)2+(1540−1393)2+(1280−1393)2+(1345−1393)2+(1300−1393)2+(1345−1364.4)2+(1560−1364.4)2+(1230−1364.4)2+(1453−1364.4)2+(1234−1364.4)2+(1500−1363)2+(1400−1363)2+(1230−1363)2+(1450−1363)2+(1235−1363)2+(1450−1474)2+(1500−1474)2+(1450−1474)2+(1460−1474)2+(1510−1474)2==203422.2
3) Sums of squared deviations between groups
SSbg=∑j=1..4nj⋅(μi−μ)2=5⋅((1393−1398.6)2+(1364−1398.6)2+(1363−1398.6)2+(1474−1398.6)2)=40767.6
4) Variance between groups
Dbg=m−1SSbg=4−140767.6=13589.2
5) Variance in groups
Ding=N−mSSing=20−4203422.2=12714.585
6) The value of the Fisher criterion
F=DingDbg=12714.58513589.2=1.069
7) p-value of Fisher criterion
1-pF(1.069,4,16)=0.41>0.05
Conclusions: There are no sufficient grounds for rejecting the null hypothesis at the reliability level of 0.95 therefore all brands are approximately equivalent.
Comments