Question #234903

Four brands of lithium ion batteries are to be compared by testing each brand in five Cars. Twenty Cars are randomly selected and divided randomly into four groups of five Cars each. Then each group of cars uses a different brand of battery. The lifetimes of the batteries, to the nearest hour, are as follows. Brand A Brand B Brand C Brand D 1500 1345 1500 1450 1540 1560 1400 1500 1280 1230 1230 1450 1345 1453 1450 1460 1300 1234 1235 1510 


1
Expert's answer
2022-01-31T16:12:12-0500

ABCD15001345150014501540156014001500128012301230145013451453145014601300123412351510\def\arraystretch{1.5} \begin{array}{c:c:c:c} A & B & C & D\\ \hline 1500 & 1345 & 1500 & 1450 \\ \hline 1540 & 1560 &1400 & 1500\\ \hline 1280 & 1230 & 1230 & 1450 \\ \hline 1345 & 1453 & 1450 & 1460\\ \hline 1300 & 1234 & 1235 & 1510\\ \hline \end{array}

Means in groups

μ1=1500+1540+1280+1345+13005=1393\mu_1=\frac{1500+1540+1280+1345+1300}{5}=1393

μ2=1345+1560+1230+1453+12345=1364.4\mu_2=\frac{1345+1560+1230+1453+1234}{5}=1364.4

μ3=1500+1400+1230+1450+12355=1363\mu_3=\frac{1500+1400+1230+1450+1235}{5}=1363

μ4=1450+1500+1450+1460+15105=1474\mu_4=\frac{1450+1500+1450+1460+1510}{5}=1474

we see that D is a best battery.

But this observation must be confirmed by a statistical test.

null hypothesis

H0:μ1=μ2=μ3=μ4H_0:\mu_1=\mu_2=\mu_3=\mu_4

For we calculate:

1) General average

μ=μ1+μ2+μ3+μ44=1393+1364.4+1363+14744=1398.6\mu=\frac{\mu_1+\mu_2+\mu_3+\mu_4}{4}=\frac{1393+1364.4+1363+1474}{4}=1398.6

2) Total sum of squared deviations

SS=j=1..4i=1..5(Ai,jμ)2=(15001398.6)2+(15401398.6)2+(12801398.6)2+(13451398.6)2+(13001398.6)2+(13451398.6)2+(15601398.6)2+(12301398.6)2+(14531398.6)2+(12341398.6)2+(15001398.6)2+(14001398.6)2+(12301398.6)2+(14501398.6)2+(12351398.6)2+(14501398.6)2+(15001398.6)2+(14501398.6)2+(14601398.6)2+(15101398.6)2==244200.8SS=\sum_{j=1..4}\sum_{i=1..5}(A_{i,j}-\mu)^2=\\ (1500-1398.6)^2+(1540-1398.6)^2+(1280-1398.6)^2+(1345-1398.6)^2+(1300-1398.6)^2+\\ (1345-1398.6)^2+(1560-1398.6)^2+(1230-1398.6)^2+(1453-1398.6)^2+(1234-1398.6)^2+\\ (1500-1398.6)^2+(1400-1398.6)^2+(1230-1398.6)^2+(1450-1398.6)^2+(1235-1398.6)^2+\\ (1450-1398.6)^2+(1500-1398.6)^2+(1450-1398.6)^2+(1460-1398.6)^2+(1510-1398.6)^2=\\ =244200.8 ​

3) Sums of squared deviations in groups

SSing=j=1..4i=1..5(Ai,jμj)2=(15001393)2+(15401393)2+(12801393)2+(13451393)2+(13001393)2+(13451364.4)2+(15601364.4)2+(12301364.4)2+(14531364.4)2+(12341364.4)2+(15001363)2+(14001363)2+(12301363)2+(14501363)2+(12351363)2+(14501474)2+(15001474)2+(14501474)2+(14601474)2+(15101474)2==203422.2SS_{ing}=\sum_{j=1..4}\sum_{i=1..5}(A_{i,j}-\mu_j)^2=\\ (1500-1393)^2+(1540-1393)^2+(1280-1393)^2+(1345-1393)^2+(1300-1393)^2+\\ (1345-1364.4)^2+(1560-1364.4)^2+(1230-1364.4)^2+(1453-1364.4)^2+(1234-1364.4)^2+\\ (1500-1363)^2+(1400-1363)^2+(1230-1363)^2+(1450-1363)^2+(1235-1363)^2+\\ (1450-1474)^2+(1500-1474)^2+(1450-1474)^2+(1460-1474)^2+(1510-1474)^2=\\ =203422.2

3) Sums of squared deviations between groups

SSbg=j=1..4nj(μiμ)2=5((13931398.6)2+(13641398.6)2+(13631398.6)2+(14741398.6)2)=40767.6SS_{bg}=\sum_{j=1..4}n_j\cdot (\mu_i-\mu)^2=\\ 5\cdot \left( (1393-1398.6)^2 + (1364-1398.6)^2 +(1363-1398.6)^2 +(1474-1398.6)^2\right)=40767.6

4) Variance between groups

Dbg=SSbgm1=40767.641=13589.2D_{bg}=\frac{SS_{bg}}{m-1}=\frac{40767.6}{4-1}=13589.2

5) Variance in groups

Ding=SSingNm=203422.2204=12714.585D_{ing}=\frac{SS_{ing}}{N-m}=\frac{203422.2}{20-4}=12714.585

6) The value of the Fisher criterion

F=DbgDing=13589.212714.585=1.069F=\frac{D_{bg}}{D_{ing}}=\frac{13589.2 }{12714.585 }=1.069

7) p-value of Fisher criterion

1-pF(1.069,4,16)=0.41>0.05

Conclusions: There are no sufficient grounds for rejecting the null hypothesis at the reliability level of 0.95 therefore all brands are approximately equivalent.


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS