f(x, y) = { 2,0< x<y<1 0 otherwise}
Determine the correlation coefficient between X and Y
Let X and Y be two random variables having joint pdf is given by
"f_{X,Y}= \\left\\{\\begin{matrix}\n\n2,\\;\\;\\;0\\leq x\\leq y\\leq 1 & \\\\\n\n0, \\;\\;\\;\\;\\;\\;\\;\\;otherwise &\n\n\\end{matrix}\\right."
Marginal pdf of X is given by
"f_X(x) = \\int^{\\infty }_{-\\infty }f_{X,Y}(x,y)dy \\\\\n\n= \\int^1_x 2dy \\\\\n\n= 2(1-x)"
Marginal pdf of Y is given by
"f_Y(y)= \\int^{\\infty }_{-\\infty }f_{X,Y}(x,y)dx \\\\\n\n= \\int^y_0 2dx \\\\\n\n= 2y"
Mean of X is given by
"E(X) = \\int^{\\infty }_{-\\infty }xf_X(x)dx \\\\\n\n= \\int^1_0 2(1-x)dx \\\\\n\nE(X) = \\frac{1}{3} \\\\\n\nE(X^2) = \\int^{\\infty }_{-\\infty } x^2f_X(x)dx \\\\\n\n=\\int^1_0 2(1-x)x^2dx \\\\\n\nE(X^2) = \\frac{1}{6} \\\\\n\nVar(X) = E(X^2) -[E(X)]^2 \\\\\n\n= \\frac{1}{6} -(\\frac{1}{3})^2 \\\\\n\n= \\frac{1}{18}"
Mean of Y is given by
"E(Y) = \\int^{\\infty }_{-\\infty } yf_Y(y)dy \\\\\n\n= \\int^1_0 2y^2 dy \\\\\n\n= \\frac{2}{3} \\\\\n\nE(Y^2) = \\int^{\\infty }_{-\\infty } y^2 f_Y(y)dy \\\\\n\n= \\int^1_0 2y^3dy \\\\\n\n= \\frac{1}{2} \\\\\n\nVar(Y) = E(Y^2) -[E(Y)]^2 \\\\\n\n= \\frac{1}{2} - (\\frac{2}{3})^2 \\\\\n\n= \\frac{1}{18} \\\\\n\nCov(X,Y) =E(X,Y) -E(X)E(Y) \\\\\n\nE(X,Y) = \\int^1_0 \\int^y_0 xyf(x,y)dxdy \\\\\n\n= \\int^1_0 \\int^y_0 2xydxdy \\\\\n\n= \\int^1_0 2 y[\\frac{x^2}{2}]^y_0 dy \\\\\n\n= \\int^1_0 y^3dy \\\\\n\n=[\\frac{y^4}{4}]^1_0 \\\\\n\n= \\frac{1}{4} \\\\\n\nCov(X,Y)=(E(X,Y) -E(X)E(Y) \\\\\n\n= \\frac{1}{4} - \\frac{1}{3} \\times \\frac{2}{3} \\\\\n\n= \\frac{1}{36}"
The corelation coefficient is
"\u03c1= \\frac{Cov(X,Y)}{\\sqrt{Var(X)} \\sqrt{Var(Y)}} \\\\\n\n= \\frac{1\/36}{ \\sqrt{1\/18} \\times \\sqrt{1\/18}} \\\\\n\n= \\frac{1\/36}{1\/18} \\\\\n\n= \\frac{1}{2}"
Comments
Leave a comment