Question #233212
  1. Random variables X and Y follow a joint distribution


f(x, y) = { 2,0< x<y<1  0 otherwise}


Determine the correlation coefficient between X and Y


1
Expert's answer
2021-09-07T03:02:51-0400

Let X and Y be two random variables having joint pdf is given by

fX,Y={2,      0xy10,                otherwisef_{X,Y}= \left\{\begin{matrix} 2,\;\;\;0\leq x\leq y\leq 1 & \\ 0, \;\;\;\;\;\;\;\;otherwise & \end{matrix}\right.

Marginal pdf of X is given by

fX(x)=fX,Y(x,y)dy=x12dy=2(1x)f_X(x) = \int^{\infty }_{-\infty }f_{X,Y}(x,y)dy \\ = \int^1_x 2dy \\ = 2(1-x)

Marginal pdf of Y is given by

fY(y)=fX,Y(x,y)dx=0y2dx=2yf_Y(y)= \int^{\infty }_{-\infty }f_{X,Y}(x,y)dx \\ = \int^y_0 2dx \\ = 2y

Mean of X is given by

E(X)=xfX(x)dx=012(1x)dxE(X)=13E(X2)=x2fX(x)dx=012(1x)x2dxE(X2)=16Var(X)=E(X2)[E(X)]2=16(13)2=118E(X) = \int^{\infty }_{-\infty }xf_X(x)dx \\ = \int^1_0 2(1-x)dx \\ E(X) = \frac{1}{3} \\ E(X^2) = \int^{\infty }_{-\infty } x^2f_X(x)dx \\ =\int^1_0 2(1-x)x^2dx \\ E(X^2) = \frac{1}{6} \\ Var(X) = E(X^2) -[E(X)]^2 \\ = \frac{1}{6} -(\frac{1}{3})^2 \\ = \frac{1}{18}

Mean of Y is given by

E(Y)=yfY(y)dy=012y2dy=23E(Y2)=y2fY(y)dy=012y3dy=12Var(Y)=E(Y2)[E(Y)]2=12(23)2=118Cov(X,Y)=E(X,Y)E(X)E(Y)E(X,Y)=010yxyf(x,y)dxdy=010y2xydxdy=012y[x22]0ydy=01y3dy=[y44]01=14Cov(X,Y)=(E(X,Y)E(X)E(Y)=1413×23=136E(Y) = \int^{\infty }_{-\infty } yf_Y(y)dy \\ = \int^1_0 2y^2 dy \\ = \frac{2}{3} \\ E(Y^2) = \int^{\infty }_{-\infty } y^2 f_Y(y)dy \\ = \int^1_0 2y^3dy \\ = \frac{1}{2} \\ Var(Y) = E(Y^2) -[E(Y)]^2 \\ = \frac{1}{2} - (\frac{2}{3})^2 \\ = \frac{1}{18} \\ Cov(X,Y) =E(X,Y) -E(X)E(Y) \\ E(X,Y) = \int^1_0 \int^y_0 xyf(x,y)dxdy \\ = \int^1_0 \int^y_0 2xydxdy \\ = \int^1_0 2 y[\frac{x^2}{2}]^y_0 dy \\ = \int^1_0 y^3dy \\ =[\frac{y^4}{4}]^1_0 \\ = \frac{1}{4} \\ Cov(X,Y)=(E(X,Y) -E(X)E(Y) \\ = \frac{1}{4} - \frac{1}{3} \times \frac{2}{3} \\ = \frac{1}{36}

The corelation coefficient is

ρ=Cov(X,Y)Var(X)Var(Y)=1/361/18×1/18=1/361/18=12ρ= \frac{Cov(X,Y)}{\sqrt{Var(X)} \sqrt{Var(Y)}} \\ = \frac{1/36}{ \sqrt{1/18} \times \sqrt{1/18}} \\ = \frac{1/36}{1/18} \\ = \frac{1}{2}


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS