Let X and Y be two random variables having joint pdf is given by
fX,Y={2,0≤x≤y≤10,otherwise
Marginal pdf of X is given by
fX(x)=∫−∞∞fX,Y(x,y)dy=∫x12dy=2(1−x)
Marginal pdf of Y is given by
fY(y)=∫−∞∞fX,Y(x,y)dx=∫0y2dx=2y
Mean of X is given by
E(X)=∫−∞∞xfX(x)dx=∫012(1−x)dxE(X)=31E(X2)=∫−∞∞x2fX(x)dx=∫012(1−x)x2dxE(X2)=61Var(X)=E(X2)−[E(X)]2=61−(31)2=181
Mean of Y is given by
E(Y)=∫−∞∞yfY(y)dy=∫012y2dy=32E(Y2)=∫−∞∞y2fY(y)dy=∫012y3dy=21Var(Y)=E(Y2)−[E(Y)]2=21−(32)2=181Cov(X,Y)=E(X,Y)−E(X)E(Y)E(X,Y)=∫01∫0yxyf(x,y)dxdy=∫01∫0y2xydxdy=∫012y[2x2]0ydy=∫01y3dy=[4y4]01=41Cov(X,Y)=(E(X,Y)−E(X)E(Y)=41−31×32=361
The corelation coefficient is
ρ=Var(X)Var(Y)Cov(X,Y)=1/18×1/181/36=1/181/36=21
Comments