Solution:
"X\\sim N(\\mu,\\sigma^2)\n\\\\\\mu=21.37,\\sigma^2=0.16"
(a)
"P(X>22.07)=1-P(X\\le22.07)\n\\\\=1-P(z\\le \\dfrac{22.07-21.37}{\\sqrt{0.16}})\n\\\\=1-P(z\\le1.75)\n\\\\=1-0.95994\n\\\\=0.04006"
(b)
n = 15
"\\Sigma X\\sim N(n\\mu,n\\sigma^2)"
"P(\\Sigma X>331.05)=1-P(\\Sigma X\\le331.05)\n\\\\=1-P(z\\le \\dfrac{331.05-15(21.37)}{\\sqrt{15(0.16)}})\n\\\\=1-P(z\\le6.78)\n\\\\=1-1\n\\\\=0"
Comments
Leave a comment