(a) Find the value of k from the condition
∑ p i = 1 \sum {{p_i}} = 1 ∑ p i = 1
Then
5 k + 10 k + 11 k + 12 k = 1 ⇒ 38 k = 1 ⇒ k = 1 38 5k + 10k + 11k + 12k = 1 \Rightarrow 38k = 1 \Rightarrow k = \frac{1}{{38}} 5 k + 10 k + 11 k + 12 k = 1 ⇒ 38 k = 1 ⇒ k = 38 1
The distribution series has the form
y 0 1 2 3 p 5 38 10 38 11 38 12 38 \begin{matrix}
y&0&1&2&3\\
p&{\frac{5}{{38}}}&{\frac{{10}}{{38}}}&{\frac{{11}}{{38}}}&{\frac{{12}}{{38}}}
\end{matrix} y p 0 38 5 1 38 10 2 38 11 3 38 12
Answer: k = 1 38 k = \frac{1}{{38}} k = 38 1
(b) E ( Y ) = ∑ y i p i = 0 ⋅ 5 + 1 ⋅ 10 + 2 ⋅ 11 + 3 ⋅ 12 38 = 68 38 = 34 19 E(Y) = \sum {{y_i}} {p_i} = \frac{{0 \cdot 5 + 1 \cdot 10 + 2 \cdot 11 + 3 \cdot 12}}{{38}} = \frac{{68}}{{38}} = \frac{{34}}{{19}} E ( Y ) = ∑ y i p i = 38 0 ⋅ 5 + 1 ⋅ 10 + 2 ⋅ 11 + 3 ⋅ 12 = 38 68 = 19 34
Answer: E ( Y ) = 34 19 E(Y) = \frac{{34}}{{19}} E ( Y ) = 19 34
(c) Let's find the variance:
D ( Y ) = M ( Y 2 ) − M 2 ( Y ) = 0 ⋅ 5 + 1 ⋅ 10 + 4 ⋅ 11 + 9 ⋅ 12 38 − ( 34 19 ) 2 = 383 361 D(Y) = M({Y^2}) - {M^2}\left( Y \right) = \frac{{0 \cdot 5 + 1 \cdot 10 + 4 \cdot 11 + 9 \cdot 12}}{{38}} - {\left( {\frac{{34}}{{19}}} \right)^2} = \frac{{383}}{{361}} D ( Y ) = M ( Y 2 ) − M 2 ( Y ) = 38 0 ⋅ 5 + 1 ⋅ 10 + 4 ⋅ 11 + 9 ⋅ 12 − ( 19 34 ) 2 = 361 383
Then standard deviation is
σ ( Y ) = D ( Y ) = 383 361 = 383 19 \sigma \left( Y \right) = \sqrt {D(Y)} = \sqrt {\frac{{383}}{{361}}} = \frac{{\sqrt {383} }}{{19}} σ ( Y ) = D ( Y ) = 361 383 = 19 383
Answer: D ( Y ) = 383 361 D(Y) = \frac{{383}}{{361}} D ( Y ) = 361 383 ; σ ( Y ) = 383 19 \sigma \left( Y \right) = \frac{{\sqrt {383} }}{{19}} σ ( Y ) = 19 383
Comments