If sample mean = 54, sample standard deviation = 6, sample size = 25, confidence level = 90%, calculate the confidence interval for the estimate of the population mean.
Select one:
a. 51.95; 56.05
b. 54.8; 90.1
c. 50.6; 54.5
d. 6.0; 25.2
"M = 54 \\\\\n\n\\sigma = 6 \\\\\n\nn=25"
Two-sided confidence interval:
"CI = (M - \\frac{Z_c \\times \\sigma}{\\sqrt{n}}, M + \\frac{Z_c \\times \\sigma}{\\sqrt{n}})"
For 90 % confidence level
"Z_c=1.645 \\\\\n\nCI = (54 - \\frac{1.645 \\times 6}{\\sqrt{25}}, 54 + \\frac{1.645 \\times 6}{\\sqrt{25}}) \\\\\n\n=(54-1.974, 54+1.974) \\\\\n\n= (52.026, 55.974)"
There is no right option.
Comments
Leave a comment