Question #228955

Construct a 99% confidence interval for the population standard deviation σ if a sample of size 8 has standard deviation 


1
Expert's answer
2021-08-24T17:08:36-0400

We need to construct the 99% confidence interval for the population variance. We have been provided with the following information about the sample variance and sample size:


s=7.5,s2=7.52=56.25,n=8.s=7.5, s^2=7.5^2=56.25, n=8.

The critical values for α=0.01\alpha=0.01 and df=n1=7df=n-1=7 degrees of freedom are χL2=χ1α/2,n12=0.9893\chi_L^2=\chi^2_{1-\alpha/2, n-1}=0.9893  andχU2=χα/2,n12=20.2777.\chi_U^2=\chi^2_{\alpha/2, n-1}=20.2777.

The corresponding confidence interval is computed as shown below:


CI(Variance)=((n1)s2χα/2,n12,(n1)s2χ1α/2,n12)CI(Variance)=(\dfrac{(n-1)s^2}{\chi^2_{\alpha/2, n-1}}, \dfrac{(n-1)s^2}{\chi^2_{1-\alpha/2, n-1}})

=((81)56.2520.2777,(81)56.250.9893)=(\dfrac{(8-1)56.25}{20.2777}, \dfrac{(8-1)56.25}{0.9893})

(19.4178,398.0265)\approx(19.4178, 398.0265)


CI(Standard Deviation)=(19.4178,398.0265)CI(Standard \ Deviation)=(\sqrt{19.4178}, \sqrt{398.0265})

(4.4066,19.9506)\approx(4.4066, 19.9506)


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS