Part a
"8C4 = \\frac{8!}{ (4! * (8 - 4)!)} \\\\\n\\mathrm{Add\\:the\\:numbers:}\\:8-4=4\\\\ \n=\\frac{8!}{4!\\cdot \\:4!}\\\\\n\\mathrm{Cancel\\:the\\:factorials}:\\quad \\frac{n!}{\\left(n-m\\right)!}=n\\cdot \\left(n-1\\right)\\cdots \\left(n-m+1\\right),\\:\\quad \\:n>\\:m\\\\\n\\frac{8!}{4!}=8\\cdot \\:7\\cdot \\:6\\cdot \\:5\\\\\n=\\frac{8\\cdot \\:7\\cdot \\:6\\cdot \\:5}{4!}\\\\\n=70"
Part b
"\\frac{8!}{2!\\left(8-2\\right)!}\\\\\n\\mathrm{Add\\:the\\:numbers:}\\:8-2=6\\\\\n=\\frac{8!}{2!\\cdot \\:6!}\\\\\n\\mathrm{Cancel\\:the\\:factorials}:\\quad \\frac{n!}{\\left(n-m\\right)!}=n\\cdot \\left(n-1\\right)\\cdots \\left(n-m+1\\right),\\:\\quad \\:n>\\:m\\\\\n\\frac{8!}{6!}=8\\cdot \\:7\\\\\n=28"
Part C
"\\frac{8!}{1!\\left(8-1\\right)!}+\\frac{8!}{2!\\left(8-2\\right)!}+\\frac{8!}{4!\\left(8-4\\right)!}\\\\\n=\\frac{192}{24}+\\frac{672}{24}+\\frac{1680}{24}\\\\\n\\mathrm{Since\\:the\\:denominators\\:are\\:equal,\\:combine\\:the\\:fractions}:\\quad \\frac{a}{c}\\pm \\frac{b}{c}=\\frac{a\\pm \\:b}{c}\\\\\n=\\frac{192+672+1680}{24}\\\\\n\\mathrm{Add\\:the\\:numbers:}\\:192+672+1680=2544\\\\\n=\\frac{2544}{24}\\\\\n\\mathrm{Divide\\:the\\:numbers:}\\:\\frac{2544}{24}=106\\\\\n=106"
Comments
Leave a comment