Solution:
n(S) = 36
2.1.1:
Let E be an event of rolling a sum of 5 or even sum.
E = {(1,4),(4,1),(2,3),(3,2),(1,1),(1,3),(1,5),(2,2),(2,4),(2,6),(3,1),(3,5),(4,2),(4,4),(4,6),(5,1),(5,3),(5,5),(6,2),(6,4),(6,6)}
n(E)=21
P(E) = "\\dfrac{21}{36}=\\dfrac{7}{12}"
2.1.2:
Let F be an event of rolling a sum of 7 or 6.
F = {(1,5),(5,1),(2,4),(4,2),(3,3),(1,6),(6,1),(2,5),(5,2),(3,4),(4,3)}
n(F) = 11
P(F) = "\\dfrac{11}{36}"
2.1.3:
Let G be an event of rolling a sum of 10 or an odd sum.
G = {(4,6),(5,5),(6,4),(1,2),(1,4),(1,6),(2,1),(2,3),(2,5),(3,2),(3,4),(3,6),(4,1),(4,3),(4,5),(5,2),(5,4),(5,6),(6,1),(6,3),(6,5)}
n(G) = 21
P(G) = "\\dfrac{21}{36}=\\dfrac{7}{12}"
Comments
Leave a comment