Answer to Question #226409 in Statistics and Probability for HUNCHO

Question #226409
Give one example of solving a problem using mgf of normal distribution
1
Expert's answer
2021-08-20T12:08:58-0400

A continuous random variable X is said to have a Normal Distribution if its PDF is:

fX(x)=1σ2πe12(xμσ)2,xRf_X(x)=\frac{1}{σ \sqrt{2π}}e^{−\frac{1}{2}(\frac{x−μ}{σ})^2},x∈R\\

So if X∼N(μ,σ2) then it’s MGF is:

Mx(t)=E(etx)=etx1σ2πe12(xμσ)2dx=et(μ+σz)12πe12z2dz,wherexμσ=z=(etμ+12t2σ2)12πe12(ztσ)2dz,M_x(t)\\ =E(e^{tx})\\ =∫^∞_{−∞}e^{tx}\frac{1}{σ \sqrt{2π}}e^{−\frac{1}{2}}(\frac{x−μ}{σ})^2dx\\ =∫^∞_{−∞}e^t(μ+σz)\frac{1}{\sqrt{2π}}e−\frac{1}{2}z^2dz, where \frac{x−μ}{σ}=z\\ =(e^{tμ}+\frac{1}{2}t^2σ^2)∫^∞_{−∞}\frac{1}{\sqrt{2π}}e^−\frac{1}{2}(z−tσ)^2dz,

Note that the portion under integration sign represents PDF of N(tσ,1) distribution; so eventually the value of the integration will be 1

etμ+12t2σ2,tRe^{tμ}+\frac{1}{2}t^2σ^2, t ∈R

So, Mx(t)=etμ+12t2σ2,tRM_x(t)= e^{tμ}+\frac{1}{2}t^2σ^2, t ∈R


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment