A continuous random variable X is said to have a Normal Distribution if its PDF is:
fX(x)=σ2π1e−21(σx−μ)2,x∈R
So if X∼N(μ,σ2) then it’s MGF is:
Mx(t)=E(etx)=∫−∞∞etxσ2π1e−21(σx−μ)2dx=∫−∞∞et(μ+σz)2π1e−21z2dz,whereσx−μ=z=(etμ+21t2σ2)∫−∞∞2π1e−21(z−tσ)2dz,
Note that the portion under integration sign represents PDF of N(tσ,1) distribution; so eventually the value of the integration will be 1
etμ+21t2σ2,t∈R
So, Mx(t)=etμ+21t2σ2,t∈R
Comments
Leave a comment