Given μ = 100 , σ = 15 , n = 900 \mu=100, \sigma=15, n=900 μ = 100 , σ = 15 , n = 900
X ∼ N ( μ , σ 2 / n ) X\sim N(\mu, \sigma^2/n) X ∼ N ( μ , σ 2 / n )
a.
P ( X < 101.1 ) = P ( Z < 101.1 − 100 15 / 900 ) P(X<101.1)=P(Z<\dfrac{101.1-100}{15/\sqrt{900}}) P ( X < 101.1 ) = P ( Z < 15/ 900 101.1 − 100 )
= P ( Z < 2.2 ) ≈ 0.9861 =P(Z<2.2)\approx0.9861 = P ( Z < 2.2 ) ≈ 0.9861
b.
P ( X > 101.5 ) = 1 − P ( Z ≤ 101.5 − 100 15 / 900 ) P(X>101.5)=1-P(Z\leq\dfrac{101.5-100}{15/\sqrt{900}}) P ( X > 101.5 ) = 1 − P ( Z ≤ 15/ 900 101.5 − 100 )
= 1 − P ( Z ≤ 3 ) ≈ 0.0013 =1-P(Z\leq3)\approx0.0013 = 1 − P ( Z ≤ 3 ) ≈ 0.0013
c.
P ( 99.3 < X < 100.5 ) = P ( Z < 100.5 − 100 15 / 900 ) P(99.3<X<100.5)=P(Z<\dfrac{100.5-100}{15/\sqrt{900}}) P ( 99.3 < X < 100.5 ) = P ( Z < 15/ 900 100.5 − 100 )
− P ( Z ≤ 99.3 − 100 15 / 900 ) -P(Z\leq\dfrac{99.3-100}{15/\sqrt{900}}) − P ( Z ≤ 15/ 900 99.3 − 100 )
= P ( Z < 1 ) − P ( Z ≤ − 1.4 ) =P(Z<1)-P(Z\leq-1.4) = P ( Z < 1 ) − P ( Z ≤ − 1.4 )
≈ 0.84134 − 0.08076 ≈ 0.7606 \approx0.84134-0.08076\approx0.7606 ≈ 0.84134 − 0.08076 ≈ 0.7606
Comments