Answer to Question #221759 in Statistics and Probability for sagarkumar

Question #221759

obtain the regression line (y=a+bx) from the following data

x: 5 9 1 10 5

y:7 10 3 8 2


1
Expert's answer
2021-08-02T12:59:50-0400

x=305=6,  y=305=6\overline{x}=\frac{30}{5}=6,\:\:\overline{y}=\frac{30}{5}=6

x=6andy=6\overline{x}=6\:and\:\overline{y}=6


byx=nxyxynx2(x2)=5(218)(30×30)5(232)232b_{yx}=\frac{n\sum xy-\sum x\sum y}{n\sum x^2-\left(\sum x^2\right)}=\frac{5\left(218\right)-\left(30\times 30\right)}{5\left(232\right)-232}


byx=10909001160232=190928=95464\:b_{yx}=\frac{1090-900}{1160-232}=\frac{190}{928}=\frac{95}{464}


Regression line yy on xx

yy=byx(xx)\:y-\overline{y}=b_{yx}\left(x-\overline{x}\right)


y6=95464(x6)y-6=\frac{95}{464}\left(x-6\right)


464y2784=95x570464y-2784=95x-570


464y=95x+2214464y=95x+2214


464y=95x+2214464y=95x+2214


  y=2214464+95464x\:\:y=\frac{2214}{464}+\frac{95}{464}x


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment