obtain the regression line (y=a+bx) from the following data
x: 5 9 1 10 5
y:7 10 3 8 2
"\\overline{x}=\\frac{30}{5}=6,\\:\\:\\overline{y}=\\frac{30}{5}=6"
"\\overline{x}=6\\:and\\:\\overline{y}=6"
"b_{yx}=\\frac{n\\sum xy-\\sum x\\sum y}{n\\sum x^2-\\left(\\sum x^2\\right)}=\\frac{5\\left(218\\right)-\\left(30\\times 30\\right)}{5\\left(232\\right)-232}"
"\\:b_{yx}=\\frac{1090-900}{1160-232}=\\frac{190}{928}=\\frac{95}{464}"
Regression line "y" on "x"
"\\:y-\\overline{y}=b_{yx}\\left(x-\\overline{x}\\right)"
"y-6=\\frac{95}{464}\\left(x-6\\right)"
"464y-2784=95x-570"
"464y=95x+2214"
"464y=95x+2214"
"\\:\\:y=\\frac{2214}{464}+\\frac{95}{464}x"
Comments
Leave a comment