obtain the regression line (y=a+bx) from the following data
x: 5 9 1 10 5
y:7 10 3 8 2
x‾=305=6, y‾=305=6\overline{x}=\frac{30}{5}=6,\:\:\overline{y}=\frac{30}{5}=6x=530=6,y=530=6
x‾=6 and y‾=6\overline{x}=6\:and\:\overline{y}=6x=6andy=6
byx=n∑xy−∑x∑yn∑x2−(∑x2)=5(218)−(30×30)5(232)−232b_{yx}=\frac{n\sum xy-\sum x\sum y}{n\sum x^2-\left(\sum x^2\right)}=\frac{5\left(218\right)-\left(30\times 30\right)}{5\left(232\right)-232}byx=n∑x2−(∑x2)n∑xy−∑x∑y=5(232)−2325(218)−(30×30)
byx=1090−9001160−232=190928=95464\:b_{yx}=\frac{1090-900}{1160-232}=\frac{190}{928}=\frac{95}{464}byx=1160−2321090−900=928190=46495
Regression line yyy on xxx
y−y‾=byx(x−x‾)\:y-\overline{y}=b_{yx}\left(x-\overline{x}\right)y−y=byx(x−x)
y−6=95464(x−6)y-6=\frac{95}{464}\left(x-6\right)y−6=46495(x−6)
464y−2784=95x−570464y-2784=95x-570464y−2784=95x−570
464y=95x+2214464y=95x+2214464y=95x+2214
y=2214464+95464x\:\:y=\frac{2214}{464}+\frac{95}{464}xy=4642214+46495x
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments
Leave a comment