Solution:
Let X is random variable of charging cellphone in A, "X \\sim N\\left(100,30^2\\right)" and "Y_{i}" is the random variable for charing battery such that "Y \\sim N(2.6,{0.2}^2)" , then by CLT, "\\sum_{i} Y_{i} \/ n \\sim N\\left(2.6, \\frac{{0.2}^2}{n}\\right)" , i.e. "\\sum_{i} Y_{i} \\sim N\\left(2.6 n, {0.2}^2n\\right)" and we want to calculate n such that "P\\left(\\sum_{i} Y_{i} \\geq X\\right)=.01" .
Let "U=\\sum_{i} Y_{i}-X" . Note that "U \\sim N\\left(2.6 n-100,900+0.04n\\right)" .
"\\begin{aligned}\n\nP\\left(\\sum_{i} Y_{i} \\geq X\\right) &=P(U \\geq 0)=P\\left(\\frac{U-E[U]}{\\sqrt{900+0.04n}} \\geq \\frac{2.6n-100}{\\sqrt{900+0.04n}}\\right) \\\\\n\n&=P\\left(Z \\geq \\frac{2.6n-100}{\\sqrt{900+0.04n}}\\right)=.01\n\n\\end{aligned}"
From the normal table
"\\dfrac{2.6n-100}{\\sqrt{900+0.04n}}=2.326"
"\\Rightarrow 2.6n-100=2.326\\sqrt{900+0.04n}\n\\\\\\Rightarrow 6.76n^2-520n+10000=4869.2484+0.21641104n\n\\\\\\Rightarrow n=\\frac{520.21641\\dots +\\sqrt{131889.59105\\dots }}{13.52},\\:n=\\frac{520.21641\\dots -\\sqrt{131889.59105\\dots }}{13.52}"
"\\Rightarrow n=65.33894\\dots \\approx65"
Comments
Leave a comment