"N=5000 \\\\\n\n\\mu=800 \\\\\n\n\\sigma=200 \\\\\n\nP(700<X<800) = P(X<800) -P(X<700) \\\\\n\n= P(Z< \\frac{800-800}{200}) - P(Z< \\frac{700-800}{200}) \\\\\n\n= P(Z<0) -P(Z< -0.5) \\\\\n\n= 0.5 -0.3085 \\\\\n\n= 0.1915"
The number of workers getting salary between 700 and 800 "= 5000 \\times 0.1915 = 957.5 \u2248958"
"P(X>900) = 1 -P(X<900) \\\\\n\n= 1 -P(Z< \\frac{900-800}{200}) \\\\\n\n= 1 -P(Z< 0.5) \\\\\n\n= 1 -0.6914 \\\\\n\n= 0.3086 \\\\\n\n= 30.86 \\; \\%"
The percentage of workers getting salary above 900 is 30.86 %
"P(X<400) = P(Z< \\frac{400-800}{200}) \\\\\n\n= P(Z< -2) \\\\\n\n= 0.0227 \\\\\n\n= 2.27 \\; \\%"
The percentage of workers getting a salary before below 400 is 2.27 %
Comments
Leave a comment