Question #219717

A box contains 10 green balls and 8 red balls. Six balls are selected at random. Find the probability that:

a) all 6 balls are green.

b) exactly 4 out of the 6 balls are red.

c) at least one of the 6 balls is red.

d) 3 or 4 of the 6 balls are red.


1
Expert's answer
2021-07-25T17:09:29-0400
10+8=18(balls)10+8=18(balls)

a)

P(6 green)=(106)(80)(186)=210(1)18564=5442P(6\ green)=\dfrac{\dbinom{10}{6}\dbinom{8}{0}}{\dbinom{18}{6}}=\dfrac{210(1)}{18564}=\dfrac{5}{442}

0.011312\approx0.011312

(b)


P(4 red)=(102)(84)(186)=45(70)18564=75442P(4\ red)=\dfrac{\dbinom{10}{2}\dbinom{8}{4}}{\dbinom{18}{6}}=\dfrac{45(70)}{18564}=\dfrac{75}{442}


0.169683\approx0.169683



(c)


P(at least 1 red)=1P(6 green)P(at\ least\ 1\ red)=1-P(6\ green)

=15442=437442=1-\dfrac{5}{442}=\dfrac{437}{442}

0.988682\approx0.988682

(d)


P(3 red or 4 red)=P(3 red)+P(4 red)P(3\ red\ or\ 4\ red)=P(3\ red)+P(4\ red)


=(103)(83)(186)+(102)(84)(186)=\dfrac{\dbinom{10}{3}\dbinom{8}{3}}{\dbinom{18}{6}}+\dfrac{\dbinom{10}{2}\dbinom{8}{4}}{\dbinom{18}{6}}

=120(56)18564+45(70)18564=235442=\dfrac{120(56)}{18564}+\dfrac{45(70)}{18564}=\dfrac{235}{442}

0.525727\approx0.525727



Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS