f ( x ) = 1 50 , x ∈ [ 10 , 60 ] f(x)=\frac{1}{50}, x\in[10,60] f ( x ) = 50 1 , x ∈ [ 10 , 60 ]
(a) P ( x < 20 ) P(x<20) P ( x < 20 )
P ( x < 20 ) = ∫ 10 20 1 50 d x P(x<20)=\int_{10}^{20}\frac{1}{50}dx P ( x < 20 ) = ∫ 10 20 50 1 d x
= x 50 ∣ 10 20 =\frac{x}{50}|_{10}^{20} = 50 x ∣ 10 20
= 20 50 − 10 50 =\frac{20}{50}-\frac{10}{50} = 50 20 − 50 10
= 3 5 =\frac{3}{5} = 5 3
(b)P ( x > 55 ) P(x>55) P ( x > 55 )
P ( x > 55 ) = ∫ 55 60 1 50 d x P(x>55)=\int_{55}^{60}\frac{1}{50}dx P ( x > 55 ) = ∫ 55 60 50 1 d x
= x 50 ∣ 55 60 =\frac{x}{50}|_{55}^{60} = 50 x ∣ 55 60
= 60 50 − 55 50 =\frac{60}{50}-\frac{55}{50} = 50 60 − 50 55
= 1 10 =\frac{1}{10} = 10 1
= 10 % = 10\% = 10%
(c) σ \sigma σ
σ = E ( X 2 ) − ( E ( x ) ) 2 \sigma=\sqrt{E(X^2)-(E(x))^2} σ = E ( X 2 ) − ( E ( x ) ) 2
E ( x ) = ∫ 10 60 x 50 d x E(x)=\int_{10}^{60}\frac{x}{50}dx E ( x ) = ∫ 10 60 50 x d x
= x 2 100 ∣ 10 60 =\frac{x^2}{100}|_{10}^{60} = 100 x 2 ∣ 10 60
= 6 0 2 − 1 0 2 100 =\frac{60^2-10^2}{100} = 100 6 0 2 − 1 0 2
= 35 =35 = 35
E ( x 2 ) = ∫ 10 60 x 2 50 d x E(x^2)=\int_{10}^{60}\frac{x^2}{50}dx E ( x 2 ) = ∫ 10 60 50 x 2 d x
= x 3 150 ∣ 10 60 =\frac{x^3}{150}|_{10}^{60} = 150 x 3 ∣ 10 60
= 6 0 3 − 1 0 3 150 =\frac{60^3-10^3}{150} = 150 6 0 3 − 1 0 3
= 4300 3 =\frac{4300}{3} = 3 4300
σ = 4300 3 − 3 5 2 \sigma=\sqrt{\frac{4300}{3}-35^2} σ = 3 4300 − 3 5 2
= 14.434 =14.434 = 14.434
Comments