Given the following set of values,
Corn Yield (Y) 10, 15, 30, 35, 25, 30, 50, 45
Fertilizer (X) 0.3, 0.6, 0.9, 1.2, 1.5, 1.8, 2.1, 2.4
Determine the equation of least square regression line.
Y^=a+bX\hat {Y}=a+bXY^=a+bX
b=∑i=1n(xi−xˉ)(yi−yˉ)∑i=1n(xi−xˉ)2b = \frac{\sum_{i=1}^{n} (x_i-\bar{x})(y_i-\bar{y})}{\sum_{i=1}^{n} (x_i-\bar{x})^2}b=∑i=1n(xi−xˉ)2∑i=1n(xi−xˉ)(yi−yˉ)
a=yˉ−bxˉa = \bar{y} - b\bar{x}a=yˉ−bxˉ
b=61.53.78=16.27b=\frac{61.5}{3.78}=16.27b=3.7861.5=16.27
a=30−(1.35×16.27)=8.036a=30-(1.35\times16.27)=8.036a=30−(1.35×16.27)=8.036
Y^=8.036+16.27X\hat {Y}=8.036+16.27XY^=8.036+16.27X
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments