2. Show that
(a) var(X – Y) = var(X) + var(Y) – 2cov(X,Y) (b) cov(X,aY + b) = acov(X,Y) if a and are constants.
(a)
"Var(X-Y)=E[(X-Y)^2]-(E[X-Y])^2""=E[X^2-2XY+Y^2]-(\\mu_X-\\mu_Y)^2"
"=E[X^2]-2E[XY]+E[Y^2]-\\mu_X^2+2\\mu_X\\mu_Y-\\mu_Y^2"
"=Var(X)+Var(Y)-2Cov(X, Y)"
(b)
"=E((X-E(X))(aY+b-aE(Y)-b))"
"=E((X-E(X))(aY-aE(Y)))"
"=aE((X-E(X))(Y-E(Y)))"
"=aCov(X, Y),"
"a" and "b" are constants.
Comments
Leave a comment