Answer to Question #212757 in Statistics and Probability for Tshimo

Question #212757

2.  Show that

  (a) var(X – Y) = var(X) + var(Y) – 2cov(X,Y)                                                                                  (b) cov(X,aY + b) = acov(X,Y) if a and are constants.         


1
Expert's answer
2021-07-16T04:02:50-0400

(a)

Var(XY)=E[(XY)2](E[XY])2Var(X-Y)=E[(X-Y)^2]-(E[X-Y])^2

=E[X22XY+Y2](μXμY)2=E[X^2-2XY+Y^2]-(\mu_X-\mu_Y)^2

=E[X2]2E[XY]+E[Y2]μX2+2μXμYμY2=E[X^2]-2E[XY]+E[Y^2]-\mu_X^2+2\mu_X\mu_Y-\mu_Y^2


=(E[X2]μX2)+(E[Y2]μY2)2(E[XY]μXμY)=(E[X^2]-\mu_X^2)+(E[Y^2]-\mu_Y^2)-2(E[XY]-\mu_X\mu_Y)

=Var(X)+Var(Y)2Cov(X,Y)=Var(X)+Var(Y)-2Cov(X, Y)

(b)


Cov(X,aY+b)=E((XE(X))(aY+bE(aY+b)))Cov(X, aY+b)=E((X-E(X))(aY+b-E(aY+b)))

=E((XE(X))(aY+baE(Y)b))=E((X-E(X))(aY+b-aE(Y)-b))

=E((XE(X))(aYaE(Y)))=E((X-E(X))(aY-aE(Y)))

=aE((XE(X))(YE(Y)))=aE((X-E(X))(Y-E(Y)))

=aCov(X,Y),=aCov(X, Y),

aa and bb are constants.  



Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment