1. Consider the following joint probability density function (pdf) of the random variables X and Y: f(x,y) = 0 ≤ x ≤ 6, 0 ≤ y ≤ 8 = 0 elsewhere
Calculate the constant c if P(2 < X < c, 3 < Y < 5) = 0,06
Check
"=\\dfrac{1}{48}\\displaystyle\\int_{0}^{{6}}[y]\\begin{matrix}\n 8\\\\\n 0\n\\end{matrix}dx=\\dfrac{1}{6}[x]\\begin{matrix}\n 6\\\\\n 0\n\\end{matrix}=1"
"=\\dfrac{1}{48}\\displaystyle\\int_{3}^{5}[x]\\begin{matrix}\n c \\\\\n 2\n\\end{matrix}dy=\\dfrac{c-2}{48}[y]\\begin{matrix}\n 5 \\\\\n 3\n\\end{matrix}=\\dfrac{c-2}{24}=0.06"
"c=3.44"
Comments
Leave a comment