The p.d.f of a continuous random variable is give
P(x) ={ kx (1-x) e*, 0 ≤ x ≤ 1
{ 0, otherwise
Find k and hence find mean and standard deviation
"=k\\big[\\dfrac{x^2}{2}-\\dfrac{x^3}{3}\\big]\\begin{matrix}\n 1 \\\\\n 0\n\\end{matrix}=\\dfrac{k}{6}"
"k=6"
"f(x)=\\begin{cases}\n 6x(1-x), & 0\\leq x\\leq 1 \\\\\n 0, &\\text{otherwise} \n\\end{cases}"
"=6\\big[\\dfrac{x^3}{3}-\\dfrac{x^4}{4}\\big]\\begin{matrix}\n 1 \\\\\n 0\n\\end{matrix}=2-\\dfrac{3}{2}=\\dfrac{1}{2}=0.5"
"=6\\big[\\dfrac{x^4}{4}-\\dfrac{x^5}{5}\\big]\\begin{matrix}\n 1 \\\\\n 0\n\\end{matrix}=\\dfrac{3}{2}-\\dfrac{6}{5}=\\dfrac{3}{10}"
"=\\dfrac{3}{10}-(\\dfrac{1}{2})^2=\\dfrac{1}{20}=0.05"
"\\sigma=\\sqrt{\\sigma^2}=\\sqrt{0.05}=0.1\\sqrt{5}\\approx0.2236"
Comments
Leave a comment