Question #210272

The p.d.f of a continuous random variable is give


P(x) ={ kx (1-x) e*, 0 ≤ x ≤ 1

{ 0, otherwise

Find k and hence find mean and standard deviation



1
Expert's answer
2021-06-27T17:26:05-0400
1=f(x)dx=01kx(1x)dx1=\displaystyle\int_{-\infin}^{\infin}f(x)dx=\displaystyle\int_{0}^{1}kx(1-x)dx

=k[x22x33]10=k6=k\big[\dfrac{x^2}{2}-\dfrac{x^3}{3}\big]\begin{matrix} 1 \\ 0 \end{matrix}=\dfrac{k}{6}

k=6k=6

f(x)={6x(1x),0x10,otherwisef(x)=\begin{cases} 6x(1-x), & 0\leq x\leq 1 \\ 0, &\text{otherwise} \end{cases}


μ=E[X]=xf(x)dx=016xx(1x)dx\mu=E[X]=\displaystyle\int_{-\infin}^{\infin}xf(x)dx=\displaystyle\int_{0}^{1}6xx(1-x)dx

=6[x33x44]10=232=12=0.5=6\big[\dfrac{x^3}{3}-\dfrac{x^4}{4}\big]\begin{matrix} 1 \\ 0 \end{matrix}=2-\dfrac{3}{2}=\dfrac{1}{2}=0.5



E[X2]=x2f(x)dx=016x2x(1x)dxE[X^2]=\displaystyle\int_{-\infin}^{\infin}x^2f(x)dx=\displaystyle\int_{0}^{1}6x^2x(1-x)dx

=6[x44x55]10=3265=310=6\big[\dfrac{x^4}{4}-\dfrac{x^5}{5}\big]\begin{matrix} 1 \\ 0 \end{matrix}=\dfrac{3}{2}-\dfrac{6}{5}=\dfrac{3}{10}




V(X)=σ2=E[X2](E[X])2V(X)=\sigma^2=E[X^2]-(E[X])^2

=310(12)2=120=0.05=\dfrac{3}{10}-(\dfrac{1}{2})^2=\dfrac{1}{20}=0.05

σ=σ2=0.05=0.150.2236\sigma=\sqrt{\sigma^2}=\sqrt{0.05}=0.1\sqrt{5}\approx0.2236


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS