Question #210150

Let X be a continuous random variable with density function f(x)={x2for 0x20otherwisef(x) = \begin{cases} \frac{x}{2} &\text{for } 0 \le x \le 2 \\ 0 &\text{, } otherwise \end{cases}

Find E[|X-E[X]|].

1
Expert's answer
2021-07-18T17:54:53-0400

f(x)={x2for 0x20otherwisef(x) = \begin{cases} \frac{x}{2} &\text{for } 0 \le x \le 2 \\ 0 &\text{, } otherwise \end{cases} ​


E[X]=xf(x)dxE[X]= \int_{-\infty}^\infty xf(x)dx

Here,

E[X]=02x×x2dx=02x22dx=x36]02=43E[X]=\int _0^2x\times \frac{x}{2}dx=\int_0^2\frac{x^2}{2}dx=\dfrac{x^3}{6}]_0^2=\dfrac{4}{3}


Now,

E[XE[X]]=E[X43]E[|X-E[X]|]=E[|X-\frac{4}{3}|]

So,


E[X43]=02x43f(x)dx=02x43(x2)dx=02x222x3dxE[|X-\frac{4}{3}|]=\int_0^2|x-\frac{4}{3}|f(x)dx=\int_0^2|x-\frac{4}{3}|(\frac{x}{2})dx=\int_0^2|\frac{x^2}{2}-\frac{2x}{3}|dx


    x36]02   x23]02=8643=0\implies \dfrac{x^3}{6}]_0^2\ \ -\ \dfrac{x^2}{3}]_0^2=\dfrac{8}{6}-\dfrac{4}{3}=0


Hence, E[XE[X]]=0E[|X-E[X]|]=0



Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS