Let X be a continuous random variable with density function f(x)={x2for 0≤x≤20, otherwisef(x) = \begin{cases} \frac{x}{2} &\text{for } 0 \le x \le 2 \\ 0 &\text{, } otherwise \end{cases}f(x)={2x0for 0≤x≤2, otherwise
Find E[|X-E[X]|].
f(x)={x2for 0≤x≤20, otherwisef(x) = \begin{cases} \frac{x}{2} &\text{for } 0 \le x \le 2 \\ 0 &\text{, } otherwise \end{cases} f(x)={2x0for 0≤x≤2, otherwise
E[X]=∫−∞∞xf(x)dxE[X]= \int_{-\infty}^\infty xf(x)dxE[X]=∫−∞∞xf(x)dx
Here,
E[X]=∫02x×x2dx=∫02x22dx=x36]02=43E[X]=\int _0^2x\times \frac{x}{2}dx=\int_0^2\frac{x^2}{2}dx=\dfrac{x^3}{6}]_0^2=\dfrac{4}{3}E[X]=∫02x×2xdx=∫022x2dx=6x3]02=34
Now,
E[∣X−E[X]∣]=E[∣X−43∣]E[|X-E[X]|]=E[|X-\frac{4}{3}|]E[∣X−E[X]∣]=E[∣X−34∣]
So,
E[∣X−43∣]=∫02∣x−43∣f(x)dx=∫02∣x−43∣(x2)dx=∫02∣x22−2x3∣dxE[|X-\frac{4}{3}|]=\int_0^2|x-\frac{4}{3}|f(x)dx=\int_0^2|x-\frac{4}{3}|(\frac{x}{2})dx=\int_0^2|\frac{x^2}{2}-\frac{2x}{3}|dxE[∣X−34∣]=∫02∣x−34∣f(x)dx=∫02∣x−34∣(2x)dx=∫02∣2x2−32x∣dx
⟹ x36]02 − x23]02=86−43=0\implies \dfrac{x^3}{6}]_0^2\ \ -\ \dfrac{x^2}{3}]_0^2=\dfrac{8}{6}-\dfrac{4}{3}=0⟹6x3]02 − 3x2]02=68−34=0
Hence, E[∣X−E[X]∣]=0E[|X-E[X]|]=0E[∣X−E[X]∣]=0
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments