Let X be a continuous random variable with density function "f(x) = \\begin{cases}\n \\frac{x}{2} &\\text{for } 0 \\le x \\le 2 \\\\\n 0 &\\text{, } otherwise\n\\end{cases}"
Find E[|X-E[X]|].
"f(x) = \\begin{cases} \\frac{x}{2} &\\text{for } 0 \\le x \\le 2 \\\\ 0 &\\text{, } otherwise \\end{cases}\n\n\u200b"
"E[X]= \\int_{-\\infty}^\\infty xf(x)dx"
Here,
"E[X]=\\int _0^2x\\times \\frac{x}{2}dx=\\int_0^2\\frac{x^2}{2}dx=\\dfrac{x^3}{6}]_0^2=\\dfrac{4}{3}"
Now,
"E[|X-E[X]|]=E[|X-\\frac{4}{3}|]"
So,
"E[|X-\\frac{4}{3}|]=\\int_0^2|x-\\frac{4}{3}|f(x)dx=\\int_0^2|x-\\frac{4}{3}|(\\frac{x}{2})dx=\\int_0^2|\\frac{x^2}{2}-\\frac{2x}{3}|dx"
"\\implies \\dfrac{x^3}{6}]_0^2\\ \\ -\\ \\dfrac{x^2}{3}]_0^2=\\dfrac{8}{6}-\\dfrac{4}{3}=0"
Hence, "E[|X-E[X]|]=0"
Comments
Leave a comment