Question #209849

Given a normal population whose mean is 50 and whose standard deviation is 5, find the probability that a random sample of a. 4 has a mean between 49 and 52. b. 16 has a mean between 49 and 52. c. 25 has a mean between 49 and 52


1
Expert's answer
2021-06-25T08:59:19-0400

μ=50σ=5\mu=50 \\ \sigma=5

a. n=4

P(49<xˉ<52)=P(xˉ<52)P(xˉ<49)=P(Z<52505/4)P(Z<49505/4)=P(Z<0.8)P(Z<0.4)=0.78810.3445=0.4436P(49<\bar{x}<52) = P(\bar{x}<52) -P(\bar{x}<49) \\ =P(Z< \frac{52-50}{5 / \sqrt{4}}) -P(Z< \frac{49-50}{5 / \sqrt{4}}) \\ =P(Z< 0.8) -P(Z< -0.4) \\ = 0.7881 - 0.3445 \\ =0.4436

b. n=16

P(49<xˉ<52)=P(xˉ<52)P(xˉ<49)=P(Z<52505/16)P(Z<49505/16)=P(Z<1.6)P(Z<0.8)=0.94520.2118=0.7334P(49<\bar{x}<52) = P(\bar{x}<52) -P(\bar{x}<49) \\ =P(Z< \frac{52-50}{5 / \sqrt{16}}) -P(Z< \frac{49-50}{5 / \sqrt{16}}) \\ =P(Z< 1.6) -P(Z< -0.8) \\ = 0.9452 - 0.2118 \\ =0.7334

c. n=25

P(49<xˉ<52)=P(xˉ<52)P(xˉ<49)=P(Z<52505/25)P(Z<49505/25)=P(Z<2)P(Z<1)=0.97720.1586=0.8186P(49<\bar{x}<52) = P(\bar{x}<52) -P(\bar{x}<49) \\ =P(Z< \frac{52-50}{5 / \sqrt{25}}) -P(Z< \frac{49-50}{5 / \sqrt{25}}) \\ =P(Z< 2) -P(Z< -1) \\ = 0.9772 - 0.1586 \\ =0.8186


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS