The length of time a full length movie runs from opening to credits is normally distributed with a mean of 1.9 hours and standard deviation of 0.3 hours. Calculate the following:
Solution:
Given, "\\mu=1.9,\\sigma=0.3"
"X\\sim N(\\mu,\\sigma)"
(i):
"P(1.5<X<2)=P(X<2)-P(X<1.5)\n\\\\=P(z<\\dfrac{2-1.9}{0.3})-P(z<\\dfrac{1.5-1.9}{0.3})\n\\\\=P(z<0.33)-P(z<-1.33)\n\\\\=P(z<0.33)-[1-P(z<1.33)]\n\\\\=0.62930-[1-0.90824]\n\\\\=0.53754"
(ii):
"P(X>2.4)=1-P(X\\le2.4)\n\\\\=1-P(z\\le \\dfrac{2.4-1.9}{0.3})\n\\\\=1-P(z\\le 1.67)\n\\\\=1-0.95254\n\\\\=0.04746"
(iii):
"P(X<x)=0.94\n\\\\\\Rightarrow P(z<\\dfrac{x-1.9}{0.3})=0.94\n\\\\\\Rightarrow \\dfrac{x-1.9}{0.3}=1.55\n\\\\\\Rightarrow x=2.365"
Required length of movie is 2.365 hours.
Comments
Leave a comment